
Yapi Header

Footer page 1

Yapi

If you use Delphi and want to create printout then you need yapi.

Yapi is Yet Another Printer Interface. It can be used for simple printouts or complex
reports. It is very simple to use. It can be used for any kind of reports, from complex
database reports to simple printouts for non-database applications.

Yapi provides:

 The printing of text with any mixtures of font or color

 The printing of grids like spreadsheets

 The printing of bitmaps

 The printing of graphical information.

Yapi includes all the facilities that your customers expect including print preview and
printer selection.

Yapi is both very simple to use and very powerful. - This PDF you are reading was
produced by yapi.

The yapi web site is currently http://yapi.webjump.com

If you have read QuickIntro.pdf you may prefer to skip to page 3 to see how yapi deals
with Grids and Bitmaps.

How this PDF was created

This PDF is an output from yapi. To create it, a Pascal program was written. This is a
relatively simple program, and a listing of it is included. The program was run. The print
button was pressed. The yapi preview screen was used to minimize widows and orphans.
It was then printed to laser printer and checked. It was then printed to a Printer Driver
that produces a PDF output. You are reading that output.

If you wish to print this document you may print this PDF. As a better alternative you may
down load the executable that created from the yapi web site. This executable is called
YapiIntro.exe, and will print this document to the best resolution of your printer.

The programs include some screen captures (using Lview Pro) and this text was prepared
in Word and then pasted into the memo component on the program. This program is
available as a demo and can be run.

Yapi Header

Footer page 2

Background to the design of yapi

As a programmer I had been using Delphi for a few years. 90% of the applications I write
do not use databases. Printing was always the weakest part of Delphi, and consumed and
inordinate amount of time, typically working with the printer canvas.

In 1999 I worked on a traffic analysis program. This project was heavy in data processing
- but in RAM and not using a DBMS. I inherited this project from another engineer who
had purchased Report Printer Pro. I did not use this tool, as the non-database operations
were not easy. Instead I developed some initial yapi type components

Recently we started building a banking system for a credit union (based on SQL server).
A team member evaluated QReport system, and found that it was not sufficiently flexible.
The complex nature of the system added to communication constraints meant we chose
not to use data aware components. This also ruled out most of the QReport components.
Also, the general ledger report for this system is very complex and defies the use of data
aware components. Yapi was born for this project and was used for all of the reports for
the banking system, with very good feed back from all team members.

How yapi operates

Yapi is a reversion to procedural programming principles. This is the most appropriate for
report generation as this kind of programming is essentially procedural. The generation of
the report "proceeds" from start to finish.

To create a yapi report a "paper" component is dropped on a form. This is used to set up
the printout format (egg margins paper size etc.). "Text" component is then dropped on the
paper component. These are used to set up fonts, size colour etc. The contents of the
report are generated with "write" and "writeln" calls. It's that simple. Yapi then provides
the print preview, printer management, and page range, number of copies etc. facilities that
users expect these days.

If you wish to try this process, read the 5-minute start PDF at the Yapi web page. This
takes you through the process of producing some printout. It will also work with the free
yapi set.

Samples and Examples

There are a set of examples and samples on the yapi web page.

The samples are PDF files of yapi output from real projects using yapi. Each is a PDF file
and a brief description. Yapi users may submit samples that may be displayed with credits.

The examples are all supplied as zip files. These contain pas and .dcu files. All of these
examples are single form programs so it is easy to compile and run them. They should be
compatible with both Delphi 4 and 5. The examples are accompanied by executables and
PDF outputs so they can view without running, or alternatively, run without compilation.

If you're here just browsing, take a moment to click on a few of the PDFs.

Yapi Header

Footer page 3

 Working with Grids

As well as straight text output, an obvious requirement is to print grids (like string grids or
spreadsheet output). One of the problems with specifying grid output is what to do at page
breaks. Grids often run across multiple pages.

The yapi approach is to treat grid data like ordinary text in a box. The boxes are designed
to line up with adjacent boxes. This means that when grid-text is printed in rows and
columns a grid appears. The nice thing about it is that page breaks are handled without
any problems at all.

The sample below shows some simple grid work.

Value Sine Cos
0 0.00 1.00

20 0.34 0.94
40 0.64 0.77
60 0.87 0.50
80 0.98 0.17

100 0.98 -0.17
120 0.87 -0.50
140 0.64 -0.77
160 0.34 -0.94
180 0.00 -1.00
200 -0.34 -0.94
220 -0.64 -0.77
240 -0.87 -0.50
260 -0.98 -0.17
280 -0.98 0.17
300 -0.87 0.50
320 -0.64 0.77
340 -0.34 0.94
360 0.00 1.00
380 0.34 0.94

Totals 0.34 1.94

As well as grid-text being used as above, they may be used as in the shadowed box in the
previous heading above. The shadowing of the box is specified in the grid text properties
box.

Yapi Header

Footer page 4

Images

Yapi supports images. Images are treated just like text in that they are placed in the report
by a specific "write" instruction. This may seem a little strange, but it does allow a lot of
control. The programmer can choose to include or exclude the image (write or not write).
They can also include images wherever in the report they require (as for the bit maps in the
document). They can also use software to create many images, even from a single
yapiImage.

The bullets in this PDF are by yapi Images (of real bullets), as is the picture at the top of
this PDF, and the screen captures.

For another example of bitmap outputs see the fishfact example. This is based on the
sample program "Fishfact" provided with the Delphi Demos (in the DB directory). The
original program has been extended to produce a report on all of the fish in the database,
together with the pictures of them.

PaintBox

The paint box allows you to create graphics with a paint event. This is equivalent to the
Delphi PaintBox component. Programmers who have used the printer canvas directly will
be able to use the yapi paintbox for placing their graphics on the printer.

Most of the properties of the paint box are the same as for the Yapi Image Component. It
supports a "Paint" event for the creation of the graphics.

Here is a sample of a yapi paint box component.

Yapi Header

Footer page 5

Listing for the Program that created this PDF file

This printout was created with a single form program. The form consists of a Yapi paper
component, various yapi components on the paper, and a button to print the form. A
screen capture of the form is as follows:

The Listing of the program is as follows:

unit IntroDemoUnit;

interface

uses
 Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,
 StdCtrls, yapi, ExtCtrls, Db, DBTables,printers;

type
 TForm1 = class(TForm)
 TextMemo: TMemo;
 Button1: TButton;
 Paper: TyapiPaper;
 Header: TyapiHeaderFooter;
 yapiHeaderFooter1: TyapiHeaderFooter;
 AthenaImage: TyapiImage;
 yapiTab1: TyapiTab;
 BulletImage: TyapiImage;
 Title: TyapiText;
 Heading: TyapiText;

Yapi Header

Footer page 6

 Body: TyapiText;
 GridHeading: TyapiGridText;
 GridBody: TyapiGridText;
 GridColour: TyapiGridText;
 tenPt: TyapiText;
 Form: TyapiImage;
 Fixed: TyapiText;
 PaintBox: TyapiPaintBox;
 PrintDialog: TPrintDialog;
 SourceMemo: TMemo;
 procedure Button1Click(Sender: TObject);
 procedure PaintBoxPaint(Canvas: TCanvas; left, top, right,
 bottom: Integer; Ref: TObject; PaintboxNumber, page: Integer;
 Printer: Boolean);
 procedure FormPaint(Sender: TObject);
 private
 { Private declarations }
 lineindex:Integer;
 sinedata,cosdata:array[0..19] of double;
 procedure PutText;
 procedure PlaceGrid;
 public
 { Public declarations }
 end;

var
 Form1: TForm1;

implementation

{$R *.DFM}

procedure TForm1.PutText;
{ this procedure puts text from the TextMemo component
 (which has the textual content of the report) on to yapi.
 It operates with a simple markup language
}
var s:string;
i:Integer;
mark:char;
begin
 with textmemo do begin
 i:=lines.count;
 while lineindex<i do begin
 s:=lines[lineindex];
 if (length(s)>1) and (s[1]='-') then begin
 mark:=lines[lineindex][2];
 case mark of
 'H' : // Print a sub heading line
 Heading.writeln(pchar(s)+3);
 'S' : begin
 // exit with linindex pointing to the next line
 inc(lineindex);
 exit;
 end;
 'B' : begin
 body.write(' '); // simple indent
 BulletImage.write; // write out our bullet - an image
 body.write(' '); // spacing between bullet and text
 body.writeln(pchar(s)+3);
 body.writeln; // next line
 end;
 'P' : begin
 paper.newpage;
 end;

 end;
 end else begin
 body.writeln(lines[lineindex]);
 end;
 inc(lineindex);
 end;
 end;
end;

Yapi Header

Footer page 7

procedure TForm1.PlaceGrid;
{ this procedure puts the data in the grid on the report }
var i:Integer;
tot1,tot2,v:double;
begin
 paper.settabspacing([gridbody.getWidth('Value '),
 gridbody.getWidth('0.00000'),
 gridbody.getWidth('0.00000')],80);
 gridcolour.writecentre('Value',0);
 gridcolour.writecentre('Sine',1);
 gridcolour.writecentre('Cos',2);
 gridcolour.writeln;
 tot1:=0;
 tot2:=0;
 for i:=0 to 19 do begin
 gridbody.writecentre(inttostr(i*20),0);
 v:=sin(i*20*3.14159/180);
 sinedata[i]:=v;
 tot1:=tot1+v;
 gridbody.writeright(format('%.2f ',[v]),1);
 v:=cos(i*20*3.14159/180);
 cosdata[i]:=v;
 tot2:=tot2+v;
 gridbody.writeright(format('%.2f ',[v]),2);
 gridbody.writeln;
 end;
 tenPt.write('Totals');
 gridbody.writeright(format('%.2f ',[tot1]),1);
 gridbody.writeright(format('%.2f ',[tot2]),2);
 gridbody.writeln;
 paper.resettab;
end;

procedure TForm1.Button1Click(Sender: TObject);
// this is the button that does all the printing
var
i:Integer;
begin
 paper.clear;
 lineindex:=0;
 title.writecentre('Yapi',0); // page title
 AthenaImage.writeattab(1); // Athena bit map on top of paper.
 title.writeln; // do some vertical spacing with empty writeln
 title.writeln; // spacing
 title.writeln; // spacing
 puttext; // place text from the TextMemo onto the printer
 paper.newpage; // form feed on the printer
 Gridheading.writeln(' Working with Grids '); // Shadowed title
 puttext; // more text from the TextMemo onto the printer
 placegrid; // Put the grid onto the paper
 puttext; // more text from the TextMemo onto the printer
 body.writeln; // spacing
 body.writeln; // spacing
 paintbox.writeln; // Put the paintbox onto the printer
 paper.newpage; // form feed on the printer
 puttext; // more text from the TextMemo onto the printer
 form.writeln; // Put the screen capture of this form onto the printer
 body.writeln; // spacing
 puttext; // more text from the TextMemo onto the printer
 body.writeln; // spacing
 for i:=0 to sourcememo.lines.count-1 do // put in onthe paper using a fixed font
 fixed.writeln(sourcememo.lines[i]);
 paper.preview; // Print preview and printing
end;

Yapi Header

Footer page 8

procedure TForm1.PaintBoxPaint(Canvas: TCanvas; left, top, right,
 bottom: Integer; Ref: TObject; PaintboxNumber, page: Integer;
 Printer: Boolean);
 { This is an event for filling the paintbox.
 It takes the two arrays of sin and cos and plots them. This event will be used
 whenever the graph needs to be displayed - either at the preview time or
 at print time.
 To simplify grahics programing there are routines to convert from a virtual space
 which can be convientient and "fixed" is size and space to the required coordinates
 }
 const
 // define the virtual space in ral coordinates
 MinX=-1; // left hand side of plot has virtual coordinate of -1
 MinY=-1.1; // Bottom of plot of plot has virtual coordinate of -1.1
 MaxX=21; // Right hand side of Plot has virtual coordinate of -21
 MaxY=1.1; // Top of Plot is has virtual coordinate of 1.1
 var i:Integer;
 function getx(val:double):Integer; // scale coordinates to image space
 begin
 result:=left+round((val-Minx)/(MaxX-Minx)*(right-left));
 end;
 function gety(val:double):Integer; // scale coordinates to image space
 begin
 result:=bottom-round((val-Miny)/(MaxY-Miny)*(bottom-top));
 end;
 procedure drawline(x1,y1,x2,y2:double); // draws a line in virtual space
 begin
 canvas.moveto(getx(x1),gety(y1));
 canvas.lineto(getx(x2),gety(y2));
 end;
begin
 Canvas.Brush.Color := clBlack;
 canvas.FrameRect(bounds(left,top,right-left,bottom-top));
 Canvas.Brush.Color := clwhite;
 // draw xaxis - use coordinates in virtuyal space
 drawline(0,0 , 20,0);
 // draw yaxis - use coordinates in virtual space
 drawline(0,-1 , 0,1);
 for i:=0 to 18 do begin
 // draw data in virtual space
 canvas.pen.color:=clBlue;
 drawline(i,sinedata[i] , 1+i,sinedata[i+1]);
 canvas.pen.color:=clRed;
 drawline(i,cosdata[i] , 1+i,cosdata[i+1]);
 end;
end;

procedure TForm1.FormPaint(Sender: TObject);
begin
 textmemo.visible:=false;
 sourcememo.visible:=false;
end;

end.

	page1
	page2
	page3
	page4
	page5
	page6
	page7
	page8

