
TMPTaskBar
Ver. 1.1

Author: Michael Powers

taskbar@gyrix.com Document revision: A

Contents:

1. Overview
1.1 Suggested implementation

2. Properties
3. Methods
4. Events
5. License
6. Registration

taskbar@gyrix.com Document revision: A

1.0 Overview
Welcome to TMPTaskBar! This component will make it much easier for the users of your
software to navigate various windows and documents in your interface. Unlike other taskbar
components which only work with MDI-style programs, TMPTaskBar is far more versatile,
enabling you to focus-swich any descendant of TForm. This control descends from TPanel, and
no TPanel functionality is obfuscated.

If you have any questions or comments, please contact the author at taskbar@gyrix.com.

1.1 Suggested Implementation
The flexibility of this component allows for many configurations but this will demonstrate

a common implementation, whether for MDI environments or not.

1. To start, place the component on a form and configure to you liking.
2. To the OnCreate() event (or constructor) call NewButton():

Delphi:
procedure NewButton(correspondingForm: TForm; buttonCaption:

 string; glyphIndex: Integer);

C++Builder:
void NewButton(TForm* correspondingForm, AnsiString

 buttonCaption, int glyphIndex);

This will create a task button for the form, when it is created. Use “this” or “self” for the
correspondingForm parameter. Do this for each form class that requires representation on the
taskbar.
3. In the OnClose() event (or destructor) call RemoveButton():
 procedure RemoveButton(correspondingForm: TForm);

void RemoveButton(TForm* correspondingForm);

Again, use “this” or “self” to indicate the button’s form association.
4. In the OnActivate() event call ButtonActive():

procedure ButtonActive(correspondingForm: TForm);

void ButtonActive(TForm* correspondingForm);

With the same technique above.
5. That’s it! TMPTaskBar does not detect MDI events, meaning you have to do a bit more work
(if you call 3 lines of code work!) in order to get up and running, but it doesn’t limit you to use
only in a MDI environment. (Note that above we used to MDI references.)

taskbar@gyrix.com Document revision: A

2.0 Properties

When true, the task button glyph will change to the respective glyph in
HotImages. When false, no action will take place during a mouse hover.

UseHotGlyphs

ButtonWidth sets the default width (in pixels) of the task buttons. If there are
too many buttons on screen to be accommodated by the bar at a given button
width, the width will be automatically reduced.

ButtonWidth

HotImages also contains a list of images that will be displayed when
UseHotGlyphs is true and the mouse is hovering over the button. The
corresponding images in HotImages must have the same respective index as
the images in Images.

HotImages

Images is assigned to a TImageList which contains a list of images referenced
by calls to NewButton() and UpdateIcon().

Images

When set to true, the buttons will have a flat appearance, a style introduced in
Microsoft Office 97. When set to false, the task buttons will have the
traditional appearance.

FlatButtons

taskbar@gyrix.com Document revision: A

3.0 Methods

function Count(): Integer;

int Count();

Returns the number of buttons on the taskbar.

Count

procedure UpdateCaption(correspondingForm: TForm; newCaption:
 string);
void UpdateCaption(TForm* correspondingForm, AnsiString

 newCaption);

Updates the caption on the button corresponding to the form indicated by
“correspondingForm”, and sets the new caption to “newCaption”.

UpdateCaption

procedure UpdateIcon(correspondingForm: TForm; newIndex:
 Integer);

void UpdateIcon(TForm* correspondingForm, int newIndex);

Updates the glyph index on the button corresponding to the form indicated by
“correspondingForm”, and sets the new image index to “newIndex”.

UpdateIcon

procedure ButtonActive(correspondingForm: TForm);

void ButtonActive(TForm* correspondingForm);

Signals to the taskbar that the form indicated by “correspondingForm” is now
active (has focus) and will depress the associated button.

ButtonActive

procedure RemoveButton(correspondingForm: TForm);

void RemoveButton(TForm* correspondingForm);

Removes the button that is associated with “correspondingForm”.

RemoveButton

procedure NewButton(correspondingForm: TForm; buttonCaption:
 string; glyphIndex: Integer);

void NewButton(TForm* correspondingForm, AnsiString

 buttonCaption, int glyphIndex);

Creates a new button, and sets it to correspond with “correspondingForm”.
The button caption will be set to “buttonCaption” and the Hot and Regular
glyphs used from the image lists will be indexed by “glyphIndex”.

NewButton

taskbar@gyrix.com Document revision: A

4.0 Events
There are no events extended beyond TPanel events.

5.0 License

Upon registration you will receive a license for the registered version. Please feel free to
distribute the unregistered version, provided you do so free of charge. The Author reserves all
ownership rights to this software.

6.0 Registration

Please register at http://www.gyrix.com/taskbar or send a message to
taskbar@gyrix.com. Thank you for registering.

taskbar@gyrix.com Document revision: A

