
AutomatedQA Corp.

Getting Started

with

AQtime 2.0

Copyright Notice
AQtime, as described in this online help system, is licensed under the software license agreement distributed with
the product. The software may be used or copied only in accordance with the terms of its license.

AQtime is Copyright © 1998-2001 Atanas Stoyanov. ALL RIGHTS RESERVED.

This help file is Copyright © 1999-2001 AutomatedQA Corp. ALL RIGHTS RESERVED.

No part of this help can be reproduced, stored in any retrieval system, copied or modified, transmitted in any form
or by any means electronic or mechanical, including photocopying and recording for purposes others than the
purchaser’s personal use.

All brands and names mentioned in this help system are the properties of their respective owners:

• Microsoft, Windows, Windows NT, Windows 95, Windows 98, Windows 2000, Microsoft Word, Excel,
Visual Studio, Visual C++, Visual Basic, Microsoft Visual J++, Internet Information Server and Personal
Web Server are registered trademarks or trademarks of Microsoft Corporation.

• Borland, Delphi, C++Builder, JBuilder and Borland C++ are registered trademarks or trademarks of Inprise
Corporation.

• CodeSite is a trademark of Raize Software Products.

• Overseer is a freeware product. It is a part of the open source project initiated by Pavel Cisar.

• GCC (or GNU Compiler Collection) is a freeware product. It is a part of the GNU project initiated by Free
Software Foundation, Inc. See http://gcc.gnu.org.

http://gcc.gnu.org

Table Of Contents

INTRODUCTION..7

Profiling vs. Testing ..7
What a Profiler Does ...7
What AQtime does ..8
Some elementary questions answered with AQtime ...9

What's New In AQtime 2.0 ... 10
System Requirements .. 11
Supported Compilers ... 12
Installation Notes... 12
Uninstalling AQtime.. 13
Getting On-Line Help.. 13
Getting Support.. 13
Integrating AQtime with Your IDE... 13

Automatic Integration..13
Manual Integration ..14

Integrating AQtime with Borland Delphi or C++Builder...14
Integrating AQtime with Microsoft Visual C++ ...14

Installing Extensions ... 15
GETTING STARTED ...16

User Interface - Overview ... 16
AQtime Panels... 19
AQtime Profilers.. 20
Preparing a Project for Profiling.. 22

Compiler Settings for Borland Delphi...22
Compiler Settings for Borland C++Builder ..22
Compiler Settings for Borland C++ ..23
Compiler Settings for Microsoft Visual C++ ..23

Embedded debug information ...24
Generating debug info as an external PDB file ..24
Generating debug info as an external DBG file ..24

Compiler Settings for Microsoft Visual Basic ..25
Debug info, generated as an external PDB file...25
Debug info, included into the executable file ..25

Compiler Settings for GCC ...26
Profiling a Project .. 27
Opening a Project .. 27
Controlling What To Profile.. 28
Excluding "System" Files and Functions .. 29
Defining Areas To Profile ... 30
Checking Elements to Profile .. 32
Using Triggers ... 33
Setting Up Triggers ... 34
Selecting a Profiler .. 35

Table Of Contents

http://www.automatedqa.com AQtime by AutomatedQA Corp.

4

Doing One Profile Run.. 35
Analyzing Profiler Results... 36

Organization ...37
Managing results...38
Transferring results...38
More usability features..38

Views Implementation... 38
PANELS REFERENCE...42

Call Graph Panel.. 42
Details Panel .. 43

You can arrange the Details panel the same way you can organize other AQtime panels..43
Function Profiler - Details...43
Function HitCount - Details ..45
VCL Class Profiler – Details...47
VCL Reference Count Profiler – Details...48
Memory and API Resource Check - Details ...50
ATL RefCount Profiler - Details...50
BDE SQL Profiler - Details...50
Unused VCL Units Profiler - Details ..50

Disassembly Panel... 50
Editor Panel ... 52
Event View Panel .. 53
Explorer Panel ... 55
Graph Panel ... 58
Macro Engine Panel... 59

Macro Engine Plug-In ...59
Macro Engine Panel ..59
About Macros..60
Macro Recording and Playback...61
Window and Process Recognition...61

Monitor Panel .. 62
Counter View ..64
Graph View ...64
Histogram View ..65

PEReader Panel ... 66
Modules Hierarchy Panel ..68
Function Information Panel...68
PE Information Panel ..70

Headers ...70
Sections ...71

Report Panel .. 71
Setup Panel .. 72
Panels How-To .. 74

Adding and Removing Columns in AQtime Panels..74
Column Format..74
Displaying Results in the Report, Details and Disassembly Panels ..74
Graph Panel Series ..75
Selecting Several Records in a Panel ..75

Working With Results ... 75
Comparing and Merging Results...75

What's New In AQtime 2.0

Copyright © 1999-2001 AutomatedQA Corp. support@automatedqa.com

5

Comparing Results ..76
Merging Results ..77

Exporting Results ..78
Filtering Results ..78
Grouping Results...79
Inserting Profiling Results into Source Code ..80
Printing Test Results from AQtime...80
Searching Results ..81
Sorting Results ..81
Views...82

Panel Options... 82
Call Graph Panel Options..82
Details Panel Options ..83
Disassembly Panel Options ...83
Editor Panel Options ...84
Event View Panel Options ..84
Explorer Panel Options ...85
Graph Panel Options ...85
Macro Engine Options...86
Monitor Panel Options ..86
PEReader Options ...87
Report Panel Options...87
Setup Panel Options ..87

PROFILERS REFERENCE ...89

Static Analysis ... 89
Coverage Profilers ... 91

Function Coverage Results..91
Line Coverage (Grouped by Function) Results...93
Line Coverage (Grouped by File) Results...94

Hit Count Profilers .. 96
Function Profiler.. 100
Function Trace Profiler.. 103

Description ..103
Displaying Parameters...106

VCL Profilers .. 107
Sampling Profilers ... 110
Platform Compliance Analysis.. 115
Exception Tracer.. 117
Unused VCL Units Profiler ... 118

Unused VCL Units Profiler – Description ..118
Unused VCL Units Profiler – Principles of Operation..120

ATL Reference Count Profiler .. 121
ATL Reference Count Profiler – Description ...121
ATL RefCount Profiler – Compiler Settings...123

BDE SQL Profiler ... 124
Memory and API Resource Check Profiler... 125

General Overview..125
Description of Results ...126
Profiling VC++ Applications ..129
Profiling VCL Applications ..129

Table Of Contents

http://www.automatedqa.com AQtime by AutomatedQA Corp.

6

Settings Dialog ..130
Profiling Memory Management Routines ...133
Checking Bounds of Memory Blocks ...134
Leak Filters Dialog..135
Predefined Filters ..137
Leak Resources Restriction ...137
Non-Existent Resources in the Report panel...138
List of Checked Functions...138

COM functions (ole32.dll and oleaut.32.dll)...138
GDI functions (gdi32.dll and user32.dll) ..138
Kernel functions (kernel32.dll)..140
Print Spooler functions (printspool.drv) ...141
Registry functions (advapi32.dll) ..141
System memory management functions...142

Profilers How-To... 142
Enabling and Disabling Profiling From Application Code ...142
Getting Results During Testing...144
Calculating Percent Time With Children ..144
Optimizing the Profiling Process ..145
Profiling Recursive Functions ...146
Overloaded Functions..149
Profiling Inline Functions..149
Profiling With Microsoft PDB or DBG Debug Info ...151
Profiling Multithreaded Applications..152
Profiling Dynamic Link Libraries ...153
Profiling ActiveX Controls, OLE Servers and DCOM Servers ..154
Profiling IIS and PWS Applications ...155
Profiling Services ..156

Profiler Options ... 157
Coverage Profiler Options...157
Function Profiler Options..157
Function HitCount Options ...158
Line HitCount Profiler Options...158
Sampling Profiler Options...159
Function Trace Profiler Options..159
VCL Profiler Optoins ..159
Platform Compliance Options ...160
Unused VCL Units Profiler Options ...160
ATL RefCount Profiler Options..161
BDE SQL Profiler Options..161
Memory and API Resource Check Profiler Options ...161

INDEX...163

What's New In AQtime 2.0

Copyright © 1999-2001 AutomatedQA Corp. support@automatedqa.com

7

Introduction
AQtime by AutomatedQA Corp.
From specification to final delivery, professional developers constantly aim to
build applications that are robust, clean-running and clear of hidden
bottlenecks, resource wastage and performance limitations. AQtime is the tool
that tells you at any moment during development how your application is
doing. It is your kit of instruments for checking the application's health.

Profiling vs. Testing
AQtime is an integrated profiling toolkit. What is the difference, then, between a profiler and a test tool? A test tool
records what each part of an application does for other parts, and what the entire application does for the user. A
profiler traces how the application does what it does. A test tool takes output measurements. A profiler takes
health measurements. Needless to say, AutomatedQA makes an excellent test tool, AQtest. But now that we've
shown that profiling and testing are two different things, the rest of this documentation will be concerned only with
what AQtime does, profiling.

What a Profiler Does
You can test an application by hand: feed it input, check the output. You can also profile an application by hand:
use a stopwatch, use system tools to check resources before and after, etc. Somewhat better, you can insert code to
do your profiling: check the system timer at the start and at the end of a code section, check resources likewise,
output function calls to a log, etc. In fact, lacking the proper automated profiler, this is what you will do when you
are concerned about the "health" of a section of code.

A profiler is called a profiler because it tracks one of these measures automatically during a run, and displays
results in comparative format. For instance, it might time the start and end of any function call, and display results
as the percent of total time used by each function. This overall comparison is the "profile".

Of course, taking only one kind of profile is not a way of keeping on top of the general health of the application.
This is like tracking your health with a balance. A good automatic profiling application will supply many kinds of
profilers, and allow you to use any number together or separately, and on varied parts of the application. Better yet,
it will let you interactively pin down the crucial information you are looking for, and which may not be where you
thought it would be at first.

Not only can a profiler take many kinds of measurements (how often a function is called, time spent in a given
unit, events generated, memory leaks, etc.) it can also get these in different ways.

• Some of it is totally non-intrusive: the profiler requests before-and-after information from the operating
system.

• Some of it is practically non-intrusive: modern operating systems switch tasks many times per second. On
each task switch, which would equally occur without the profiler being present, the profiler can gather some
extremely simple information; what this changes to the task switch is unmeasurable; the profiler's only
practical intrusion is that it uses some memory and resources. Such a profiler is called a sampling profiler.

• Some of it is minimally intrusive: profiling operations are inserted at many spots, but they are inserted
through binary instrumentation. That is, once the executable code is loaded into memory, it is modified to
add the needed operations. This is better than source-code instrumentation not only for the reasons explained

Introduction

http://www.automatedqa.com AQtime by AutomatedQA Corp.

8

below, but because in binary the profiling points can be positioned more precisely. For instance, a short (but
often-called) function may spend most of its time in setup and finalization, that is, before the first line of
code and after the last. Instrumenting source cannot profile those parts of it, so it yields highly misleading
information.

• Some of it is awkwardly intrusive. The processor allows a soft breakpoint operation, which in principle
would be the simplest way to call profiler services. So, one variation of binary instrumentation or source
code modification (see below) is to insert these "made to order" soft-breakpoint instructions. Under Windows
NT or 2000, however, each soft breakpoint implies a context switch, as the profiler is running as a separate
process. The result is that most of the runtime will be occupied by these context switches.

• Some of it highly intrusive: the profiler requires modification of the source code, so that your profiling
source is never your normal-build source. Since this implies thousands of insertions, it has to be done by an
automated source-modification tool. The tool will tempt you into "avoiding" the forking by letting it undo the
modifications it did. This is worse still – you can never be sure the "cleaned up" source is identical to what
you had in the first place. Some people have sworn off automated profilers because of these intrusions.

As you might expect by now, AQtime never, ever modifies source code. In fact, it always uses the least intrusive
method to achieve the requested results. However, since you normally expect results to refer to functions or
sections of code, most AQtime profiles require that the application be compiled with debugger information, so that
code points can be linked to function or unit names.

Also, AQtime does not use soft breakpoints, with their context switches. The operations added by binary
instrumentation are minimal, and run in the same process as the application. It should be noted, however, that
binary instrumentation is still instrumentation. The operation may be very quick, but it leaves the processor, with its
pipelines and caches, in a somewhat different state than if there had been no instrumentation. Very fine operations
will run somewhat differently. This is one reason AQtime also provides a sampling profiler. See AQtime Profilers.

A note about results – Many profiles are measures of relative time. In the ordinary world, relative time is time
relative to total elapsed time, that is, real time. In profiling generally, it's different. You cannot do anything about
the elapsed time spent waiting for user input, except to go without the input. You can somewhat easier go without
some system calls, but the fact remains that you cannot improve system code. So, a profiler by default compares
profiled times – the times your own code takes to execute. Relative time is time relative to the time taken by all
profiled functions.
AQtime of course allows you to get profiles for each function taken alone, or including all the calls it makes to
other functions ("child calls"). It also allows you to include or exclude time spent calling the system. And finally it
allows you to profile functions not just relative to one another, as is the usual practice for profilers, but relative to
real time, the entire elapsed time of the profile run, that is, including input and output calls.

What AQtime does
A hidden but crucial aspect of AQtime is that its architecture is COM-based. This means it can be used as a server
by any application (the idl is supplied of course). In fact, it is used for some services (e.g. coverage) by
AutomatedQA's test automation software, AQtime. More important is that all the parts of AQtime are COM
objects. They can be separately plugged in or out. In fact, some of the profilers we will list below are supplied with
your installation as separate plug-ins. More will be made available, or are already available on AutomatedQA's
Web site, www.automatedqa.com.

Therefore, each of these profilers is a standalone object, each is built and tuned to its one purpose. We are not
talking about surface "features" added to the same basic engine, we are talking about separate, professional-grade
profilers. The business of making them easy to understand and run, and of integrating their results together in a
flexible format, is left to the User Interface, discussed further down.
The current list of profilers is in a separate topic, AQtime Profilers. You should read that before proceeding – it's
the heart of AQtime.

www.automatedqa.com

What's New In AQtime 2.0

Copyright © 1999-2001 AutomatedQA Corp. support@automatedqa.com

9

The User Interface's main tasks are to allow you to:

• Specify the application to profile (project).

• Choose profilers to run on it.

• Filter the profiler results to center on your particular points of concern.

• Display the results.

• Format reports.
Results can be filtered by time, location, etc. They can also be filtered by the thread in which the event

occurred.
There are many display options. Most results can be shown in one or several graphical formats (e.g. histogram),

or in a selection of columns.
One display mode for Function profiler results deserves special attention: the Call Graph. All binary-

instrumented profilers in AQtime can record the caller for each call of a function. The problem is what to do with
the resulting data. The Call Graph is a very easily understood, interactive display that shows each profiled function
with basic timings, and arrows from the functions that called it, and to those that it called. Each arrow carries the
count of calls recorded.

The most controllable form of result display is the report, which is a totally-configurable grid shown in the
Report Panel. Besides this onscreen display, the Report Panel can print its contents with such options as headers,
footers, colors, etc.

Finally, both what you do in AQtime and what you do in your application can be recorded, so that any AQtime
session can be repeated exactly on a new build for comparison. See Macro Recorder.

At this point, you may like to try your hand on a small project. See Preparing a Project for AQtime. But first, if
you do not quite see your way around the user interface, begin with User Interface - Overview. Once you
understand the user interface, here are a few things you might try in your first projects – among others:

Some elementary questions answered with AQtime
• Which units and or files are used by my program?

• Am I linking to my program units and or files that are not really used?

• Which procedures are linked to my program?

• How many procedures are used by my program?

• How many files and or units are used by my program?

• Where in the memory address space are my procedures loaded?

• What is the longest procedure (in procedure source code lines)?

• What is the biggest procedure (in bytes)?

• What is the biggest unit and or file in compiled bytes?

• Which unit contains the greatest and or lowest number of procedures?

• What is the most used and or executed procedure?

• What is the slowest procedure in my program?

• What is the slowest area of my program?

• Which piece of code never gets executed?

• What is the execution flow of my program?

Introduction

http://www.automatedqa.com AQtime by AutomatedQA Corp.

10

• What is the most used class in my program?

• Do I free all classes allocated in my program?

• What is the binary output produced by the compiler for my source code?

What's New In AQtime 2.0

If you've used QTime, AQtime's forebear, (and even if you haven't) this list will help you get up to speed quickly
with the new version. .
0. QTime supported Macro recording of user actions for playback, so this isn't an honest "What's New" item.

And there are several new features that are even more important. But the Recorder feature is easy to overlook
because it is normally not visible onscreen. Be sure to see Macro Recording and Playing Back.

1. AQtime profiles Visual Basic applications. Both of Microsoft' debugger information formats, PDB and DBG,
are supported. See Compiler Settings for Microsoft Visual Basic.

2. AQtime supports the most common debugger format for Visual C++ applications, Program Data Base (PDB).
See Compiler Settings for Microsoft Visual C++.

3. AQtime profiles GNU C++ (GCC) applications. See Compiler Settings for GCC.
4. AQtime is an OLE server. You can control the profiling process from any application, including the

application under test. See Enable/Disable Profiling from Your Application. This also allows AQtime to
provide services to AQtest, AutomatedQA's test automation and management tool.

5. AQtime includes triggers. These only apply with the function profilers (all three). Any function can be defined
as an on-trigger, and the effect will be that it will turn profiling on, for their thread, on entry and off on exit.
Off-triggers will suspend profiling for their thread while they run (including everything they call, directly or
indirectly). See Using Triggers.

6. AQtime integrates into development IDEs – Microsoft Visual C++, Borland Delphi, Borland C++Builder,
Borland C++. See Integrating AQtime into your IDE.

7. The new Call Graph panel displays the flow of execution graphically, in a hierarchical scheme that provides
you with an overall view of where the application spends its time, then lets you dig down into the chain of
functions calls to any level of detail, always with full timing information. See Call Graph Panel.

8. The new Events panel targets every kind of event that occurs during the run – UI events, messages,
exceptions, module loading and releasing, thread creation and termination, process creation and termination,
etc. These are displayed in an expandable tree with information about parameters, results, and of course precise
time of occurrence. See Event View.

9. The new Memory and API Resource Profiler is two monitors wrapped in one. They both work and display
in real time, but also can output reports at the end of the run. The Memory Resource profiler tracks memory
allocations made by the application and signals leaks and overwrites (e.g. of "just released" memory). The API
Call monitor tracks all calls to the Windows API and shows their parameters and return values, especially
errors. See Memory and API Resource Check Profiler.

10. The new Platform Compliance Profiler uses a database of all APIs supported by any Windows platform to
tell you what platforms the application will run on without modifications, and every call that would have to be
modified to make it run on other platforms. See Platform Compliance Analysis.

11. The new PEReader Profiler reads the structure of the application's executable and reports what module
actually got linked in, what functions it exports, which it imports and what dll's it links statically. See
PEReader.

System Requirements

Copyright © 1999-2001 AutomatedQA Corp. support@automatedqa.com

11

12. The Function Profiler now has an option to figure time percentages relative to total elapsed time, rather than
relative only to total profiled time. The difference is that profiling is off during system calls and calls to other
functions you choose not to include. Relative-to-profiled-time tells you how expensive a call is relative to the
other calls you are profiling. Relative-to-total-elapsed-time tells you how expensive it is relative to the entire
test run. See % with children relative to real time option in Function Profiler Options.

13. The Function Profiler lets you drill down more easily. It has options to order functions in the Call Graph, to
show the function body in the Details panel, to show individually only functions that cost more than a given
percentage of the total time, etc… See Function Profiler Options.

14. The Function Trace profiler can show calls in the Events view, can show the values of parameters on each
call, and can display a memory dump from the top of the stack. See Function Trace Profiler.

15. The Function Trace profiler can log its results to file, to a display panel in real time, or to both. See Function
Trace Options.

16. All relevant profilers identify the thread a call occurs in, and can display results by thread. Threads can also
receive meaningful names from the application. See Profiling Multithreaded Applications.

17. AQtime can display results before the end of the process being profiled. This allows profiling processes that
cannot be ended without major inconvenience, such as Windows NT services or IIS Applications. See Getting
Results During Testing.

18. The Explorer panel can now automatically merge new results with existing ones. This facilitates gathering
statistics over many iterations of a test. See Auto-Merge in Explorer Panel Options.

19. AQtime now records your jumps among procedures in the Report panel, so that you can easily retrace your
steps backwards or forward, as in a browser. (The Report panel is AQtime's main output, and you are likely to
spend most of your time there.) See Report Panel.

20. Test results can be exported to an XML file, viewable on any computer that has Internet Explorer 5.0 or
better. See Exporting Data.

We should be done by now, but we're not. More improvements —
- Test results can be added to source code as comments. See Inserting Results into Source Code.
- Results from separate runs can be displayed side by side. See Details Panel.
- Searching and sorting of features in the Setup Panel.
- Advanced drag-and-drop mode in the Setup Panel.
- Column customization in the Setup Panel.
- Modified Add Procedure, Add Classes and Add Unit dialogs.
- Modified Docking mechanism.
- Records can be printed directly from the Report panel.
- Printed reports can be customized for page properties, font style and color, background, etc. See Printing

Results from AQtime.
- User-defined file types to be recognized by the Editor for syntax highlighting in Visual C++, Visual Basic,

Delphi or C++Builder styles.
- More, more…

System Requirements

AQtime 2.0 is designed for 32-bit operating systems such as Microsoft Windows 98, Windows 95, Windows NT
4.0, Windows 2000 or Windows ME.

Introduction

http://www.automatedqa.com AQtime by AutomatedQA Corp.

12

System requirements:

• Pentium 90 MHz processor or faster (Pentium 166 recommended).

• 64MB RAM or more (96MB or more recommended).

• Microsoft Windows 95, Window 98, Windows 2000, Windows ME or Windows NT 4.0 with Service Pack 3
or later.

• Microsoft Internet Explorer 4.0 or later (It is necessary for Macro Recorder).

• 30 MB hard disk space for optimal performance.

• VGA or higher resolution monitor.

• Mouse or other pointing device.
AQtime consumes a lot of memory to store all the profiling information, so for very big projects, it is

recommended to have as much RAM as necessary so Windows does not use the swap file.

Supported Compilers

AQtime is a universal utility. Unlike most existing means, AQtime profiles applications, created by different
development tools:

− Borland Delphi

− Borland C++Builder

− Borland C++

− Microsoft Visual C++

− Microsoft Visual Basic

− GNU Compiler.
There are extensions that support Java and NET compilers.

Installation Notes

To install AQtime, execute the installation you have acquired from AutomatedQA and follow the instructions
presented by the setup program. By default, the setup program installs AQtime in the <Program
Files>\AutomatedQA\AQtime directory. You can specify any other path, if required.

When installing under Windows 98 with Client for Netware Networks running, an InstallShield defect forces the
installation to exit or stop with a fatal error message if you press the Browse button on the directory selection
dialog.

In this case install AQtime to the default directories, rather than using the Browse button.
For more information on this problem, review the following technical articles on the InstallShield and Microsoft

sites:

− Search for article Q192249 at http://support.microsoft.com/search/default.asp

− Search for article Q102400 at http://support.installshield.com

Uninstalling AQtime

Copyright © 1999-2001 AutomatedQA Corp. support@automatedqa.com

13

Uninstalling AQtime

To uninstall AQtime from your computer, open the Control Panel folder and double-click the Add/Remove
Programs icon. Select AQtime from the list and then press the Add/Remove button. Follow the on-screen
instructions.

Getting On-Line Help

This manual includes only a brief description of AQtime. More information on AQtime is contained in its online
help system. To call the on-line help, select Help | Contents from AQtime's main menu. To get help for a AQtime
dialog, press F1 or click the Help button within the dialog. To get help on the currently selected profiler, press Ctrl-
F1 or choose Help On Selected Profiler from the Report context menu.

Getting Support

The goal of our support team is to answer and alleviate any problems you might encounter when using AQtime.
Feel free to contact us at:

E-Mail:
support@totalqa.com

For a list of commonly asked questions visit us on the World Wide Web at:
http://www.totalqa.com/support

Integrating AQtime with Your IDE

For easy access, AQtime can be installed on the Tools Menu of Borland Delphi, C++Builder or Microsoft Visual
C++. Once this is done selecting AQtime from the Tools Menu in the development tool will launch AQtime,
compile the current application with debugger information and load it in AQtime with parameters (host application,
command line, etc).

You can perform this installation by using the Integration dialog or manually, using the menu system of the
development tool. The dialog does the same things for you that you would do manually, but the development tool
must be restarted to make the changes effective.

Automatic Integration
The Integration Dialog allows automatic integration into any of the supported development tools installed on the
machine. To call the dialog, select File | Integrate AQtime… from the main menu.

mailto:support@totalqa.com
http://www.totalqa.com/support

Introduction

http://www.automatedqa.com AQtime by AutomatedQA Corp.

14

Choose the development tools you want to integrate AQtime with and press OK. Restart these development
tools to make the changes effective.

Manual Integration

Integrating AQtime with Borland Delphi or C++Builder

To integrate AQtime with Delphi or C++Builder, perform the following steps:
1. Open the development tool.
2. Select Tools | Configure Tools from the Borland main menu to open the Tools Options dialog.
3. Press Add to open the Tool Properties dialog.
4. Press Browse and locate AQtime.exe on your hard drive.
5. In the Parameters box, select the following macros: $TDW $EXENAME $PARAMS. This will instruct your

IDE to launch AQtime by compiling the current program with debug information and will then pass the exe file
name and command-line parameters to AQtime.

6. Type AQtime in the title.
7. Press OK to close the dialog box.

Integrating AQtime with Microsoft Visual C++

To integrate AQtime with Visual C++, perform the following steps:
1. Open Visual C++.
2. Select the Tools | Customize… from the VC++ main menu. This will call the Customize dialog.
3. Choose the Tools page in the Customize dialog.

4. Press New at the top of the dialog to create a new item.
5. Press the ellipsis button on the right of the Command box and locate AQtime.exe on your hard drive.

Installing Extensions

Copyright © 1999-2001 AutomatedQA Corp. support@automatedqa.com

15

6. Enter the following macros in the Arguments box: “$(TargetPath)” $(TargetArgs). This will instruct your IDE
to launch AQtime and then pass the exe name and the command-line parameters to AQtime. Note: Do not
forget to put $(TargetPath) in quotes, as shown above, else any path with space characters will not be
recognized.

7. Type AQtime in the title.
8. Press Close to close the dialog box.

Installing Extensions

AQtime is built on an open, COM based, architecture which allows you to write external plug-ins for it or install
plug-ins from any source. In fact, all AQtime panels are plug-ins, but most are not left as external modules (else the
UI could be very confusing).

AQtime ships with several external modules:
ATL RefCount Profiler Tracks the usage of ATL classes and COM objects.
BDE SQL Profiler Measures the execution time of SQL queries and stored

procedures, when processed via the Borland Database
Engine.

Exception Tracer Traces application exceptions in real time.
HexView panel A sample panel plug-in. Displays the function binary code

as hex numbers and ASCII characters.
Macro Recorder Records and plays back macros that simulate user actions

on the application.
Memory and API Resource
Check Profiler

Monitors each call to API functions and tracks memory and
resource usage.

Monitor Traces resource usage in real time.
PEReader Analyzes statically linked libraries and imported functions.
Unused VCL Units Profiler Determines which Delphi modules are not actually used by the

application. (Source code for this is available.)

Installing a custom plug-in is extremely simple:
1. Select the File | Install Extension menu item. This will bring up the Install Extensions dialog.
2. In the dialog, press the Add… button to insert the plug-in into the list of installed plug-ins.
3. Press OK to save changes. This is what actually installs the plug-in.

Getting Started

http://www.automatedqa.com AQtime by AutomatedQA Corp.

16

Getting Started

User Interface - Overview

Most of AQtime's screen area is occupied by panels, and these are somewhat special. We'll return to them below.
The rest of the interface is occupied by elements you already know from Microsoft Office, or from your
development tool –

A main menu which is actually a toolbar with text items that open submenus. You can drag this menu around
using the toolbar handle at the left, and the last item, a simple down arrow , gives access to the Add or Remove
Buttons submenu, from which you can modify not only the Main Menu, but all the other toolbars. Add or Remove
Buttons also lets you choose which toolbars will show, and which will stay hidden:

About these options, see Customizing Toolbars in on-line help.

A number of other toolbars. Standard, Report and Editor are shown above. They all have handles at the left and
Add or Remove Buttons at the right, as explained for the Main Menu. As you can see above, the Standard toolbar
has three text boxes. Each is a dropdown list, not an edit box. It is possible to position a toolbar so that there is not
enough horizontal space for it. In that case, you will get the start of the toolbar, ending with a icon at the right, to
show that you can scroll the toolbar to see what's currently hidden:

User Interface - Overview

Copyright © 1999-2001 AutomatedQA Corp. support@automatedqa.com

17

You may well set up your AQtime so that not all toolbars are showing. For information on the purpose and contents of
each available toolbar, see:

- Disassembly Toolbar
- Editor Toolbar
- Explorer Toolbar
- Graph Toolbar
- Report Toolbar
- Setup Toolbar
- Standard Toolbar

Context menus that respond to a right-click (or left-click if you are lefthanded) and vary depending on where
the mouse pointer is at the moment. A context menu is available everywhere except over blank space around the
toolbars and main menu. There are perhaps a score of different context menus for the different spots. Microsoft
often uses the term shortcut menu for these menus. In theory this is when all options on them are available also
from the main menu. AQtime's context menus often hold options that are available only through there.

The general layout is as follows:

Getting Started

http://www.automatedqa.com AQtime by AutomatedQA Corp.

18

Most of the area, as we said, is taken up by panels. There are common ways of arranging columns and lines in
the grids which most panels display (see Index). Beside this, the general organization of each panel has its own set
of options, which you will find on the main menu – Options | Panel Options.

But the most important point about handling panels is how they can be moved around – docking. Panels are
where you do your actual work and get your results in AQtime. Docking is our way of providing you with the most
flexible workspace for the particular task you're interested in. It means that the entire work area can be
reconfigured at will, even beyond what is possible with toolbars (moving, hiding, etc.). This is explained in a
separate topic, which you should read: Docking.

Each panel serves a separate purpose in your work with AQtime. What is the purpose of each and how they
work together is also explained in a separate topic which you should read: AQtime Panels.

Finally, since you can change so much of the organization of your workspace, it can be quite useful to save it.
It's even more useful to have several favorite panel and toolbar configurations at hand that you can load depending
on task. For this you have Options | Save Desktop As… and Options | Load Desktop… on the main menu. Don't
hesitate to use them.

But, just in case, there is also Options | Restore Default Docking, and an entire Panels submenu so you can
reach panels after you have hidden them "somewhere". So, don't be afraid to expriment!

AQtime Panels

Copyright © 1999-2001 AutomatedQA Corp. support@automatedqa.com

19

AQtime Panels

When using AQtime --

• First you define a profiling project, which will likely involve many profile runs over several days or months.

• Then, for each profile run –
- you first define what you wish to profile, …
- then execute the profile run, …
- which generates results when the application exits or when you ask for this through Project | Get Results.

• Once you have the new Results --
- you can browse through them …
- or examine them in specific, targeted ways.

• This result set is automatically added to the collected result sets for the project, and, then or later –
- you can manage the collection, …
- examine stored results with all the tools available for new results, …
- compare result sets …
- or merge them into new sets.

You will spend most of your time in AQtime working in its panels. The panels are organized to support the task
list above, each panel taking care of one aspect. Of all the tasks above, only the first, defining a project is done
outside a panel.

In the following picture, the latest result set from the Explorer panel is being browsed through in the Report
panel, with extensive details for the current line in Report displayed below in the Details panel.

There are four major panels. They closely follow the task list above –
Setup This is where you go before a profile run to define what it will profile, and when, once you

have selected which profiler to use from the Profiler dropdown list.
Event View This reports messages and events during profiling as they occur. In other words, this is

where you track the ongoing profile run.
Report After your results are generated, they are displayed here, and you can browse through them.

If the profiled application used threads, the Thread dropdown list lets you choose any single
thread to display the results for, or all threads. There are also ways to filter results and to
organize the display in the panel. You can save a particular format for the panel and the
filters as a View. The View dropdown list lets you apply a View you have saved, or one of
the pre-defined ones.

Explorer This is where you manage result sets from the current project, including the latest.
Normally, the sets displayed are only those for the currently selected profiler, but you can
also choose to have all the collections (one per profiler) presented as a treeview. Any result
set can be selected and displayed in the Report panel. You can add a description to each set,
and you can store it, retrieve it, merge it with others, compare it to others, save it to a
separate file or read it from one. You can organize the entire collection through folders, and
you can delete sets from it.

Five more panels act as extensions to the Report panel, providing various types of information about the
currently selected line in Report, or about global results:
Graph Shows selected results, or the entire set, in over a dozen different graphical forms.

Getting Started

http://www.automatedqa.com AQtime by AutomatedQA Corp.

20

Details For Function Profiler, VCL Class, VCL Reference Count, Memory and API Resource
Check, and for some other plug-in profilers, this provides added detail for the selected line
in Report, which it would be impossible to show within reasonable space as added columns
in the Report panel itself.

Editor Displays the source code for the line selected in Report (if available), along with optional
summary results.

Disassembly Displays the binary code for the line selected in Report, in assembly language, showing
either source code with its line-by-line disassembly, or plain disassembly from the binary
code in memory.

Call Graph For the Function HitCount and Function Profilers, shows the callers for the function
selected in Report, and which functions it called in turn, with statistics for each link. The
call hierarchy can be browsed up or down by double-clicking on any parent or child,
without returning to Report.

AQtime keeps information about your browsing in Report and its extension panels, just as a Web browser
would. There are Back and Forward on the Report toolbar, and you can use them to move back and forth
among a sequence of functions that you are focussing on.

Most of AQtime panels hold tables of data. You can customize them as you wish: Change the column size and
place, add and remove columns, sort and group records, etc. See Arranging Columns… in the Index. Exactly what
each panel displays is configurable through Options | Panel Options… from the main menu. There are separate
options for each panel.

Each panel can be undocked and moved to any other location. The Options | Docking Allowed menu item
specifies whether the docking is active or not. If this option is on, you can undock any panel by double-clicking its
header. Then, you can drag this panel to other location, e.g. you can put it to the tabbed page along with another
panel. See Docking for complete description of the docking mechanism. If you ever need to bring up a panel
quickly, the Panels submenu of the main menu has no other purpose – it's your failsafe panel retriever.

AQtime Profilers

This topic is actually an extended section of the AQtime Overview, so it is recommended you read that first. The
object of this section is what do you use the profilers for? All profilers currently supplied with AQtime are listed,
and each has a reference to its own topics for details. This topic provides the what-is-this-for overview.

The point of using any profiler is to know what your application is doing. There are simply so many things a
Windows application does that to list them in series would be to drown you in detail. Each profiler supplied
addresses a limited subset of "What is the application doing?", and uses the best technique to deal with that subset.

To begin, you want to know about how the source is used or left unused. For this, Static Analysis will tell you
the number of modules, classes or functions, which are the largest (in source lines or in binary) and which are
unused. It will also tell you what Windows versions support the API calls in the source (Platform Compliance). See
it as an intelligent overview browser for the debug information linked into the executable.

The complement to Static Analysis is the PEReader. (PE is the Windows executable format.) Without source,
without needing debug information, the PEReader tells you statically what is actually in the executable – modules
that are part of it, functions imported or exported, statically linked dll's, etc., with full details. From a health-check
perspective, this can give some important answers very quickly, without profiling any particular run.

All other profiling is done while the application runs. The Sampling profilers (function and line) are the ones
described as "practically non-intrusive" in the section above. You can run them on the entire application with no
perceptible slowdown. They will tell you how much time the application spends, proportionally, inside each
function, class or module, and how much time it spends on some more time-consuming lines, if you use the line-

AQtime Profilers

Copyright © 1999-2001 AutomatedQA Corp. support@automatedqa.com

21

profiling option. Note that sampling is not extremely accurate, and becomes unreliable for very short functions.
Also, using line profiling will cause some slowdown.

The other limitation of the sampling profilers is that they require Windows NT or 2000. Otherwise, because they
provide so much information with so little trouble, they're the first run-time profilers to try.

All other profilers use binary instrumentation (an invisible runtime process explained in the Overview). It is
seldom a good idea to run them on the entire application – they slow down the execution of small, fast functions,
and they simply output too much detail. This is why AQtime has Areas – an Area is simply a collection of
modules, classes, functions on which to turn on profiling. Outside of the specified Area, no binary instrumentation
is put in. Areas can also be used with the sampling profilers.

Whether or not you first did an overall check with a sampling profiler, you will normally engage in a dialogue
with AQtime, going from one profiler to another, tuning areas in and out. AQtime can go to near-insane detail in
telling you what your application is doing. In the real world, it should tell you what you want to know about what
your application is doing. It can't tell what you want to know unless you tell it first. And usually you will only know
in the first place by circling around, and then down.

The two main binary-instrumented profilers are Hit Count and Function. The latter times each execution of each
function in the selected area. The results will tell you how many times the function was called, how many times it
failed to exit normally, how much time it spent on average, at a minimum or at a maximum, the average time
including all calls to other functions, the two averages (alone and with calls) as a percent of total execution time,
etc.

The HitCount results are the same as the Function results, except that there are no timings, just a count of calls.
This holds its own lessons – functions never called, functions called much more often than expected, etc. Normally,
you will use the Sampling or Hit Count profilers, or both, to pin down the points of interest before going on to the
Function profiler. The Hit Count profiler also has one option the Function profiler does not have – counting "hits"
for source lines. Very useful too (but slower).

The Coverage profiler is a variation on the Hit Count profiler. It doesn't provide counts, only yes/no values on
whether the function or line was executed at all. The reason for having a subset of Function results in Hit Count,
then a subset of Hit Count in Coverage, is to avoid human data overflow. No profiler results are any use beyond
what you actually get out of them. Localized information can swamp out global relationships. Switching between
Coverage, Hit Count and Function lets you directly get at what you want to know at the moment. Coverage is
actually three profilers: Function, Line (grouped by function) and Line grouped by file (module). As always,
profiling by line will slow execution somewhat.

The Function Trace profiler is a different animal. It does not provide statistics, it traces calls in real time. The
output is the list of calls made during the profile run, in a collapsible tree display, with call times. Function Trace
currently can only operate with Object Pascal source code. However, it is an industry first – it does automatically
what can otherwise only be done by introducing hundreds of trace-message lines in the source.

An equally different animal is the Memory and API Resource Check Profiler. Like Function Trace, it works in
real time. It follows memory allocations and API calls. For the allocations, it will tell you when (and if) they are
released, whether any write goes outside the allocated block and whether any write is to an unallocated block. For
the API calls it will tell you input parameters and return values (especially, errors). In report mode, it will also trace
back where the call was made from in your application, where that function was called from in turn, etc. Obviously,
if you see a profiler as a health-check tool, the Memory and API Resource Profiler is a crucial element.

There are two more profilers that work in a similar way to the memory part of the Memory and API Monitor.
The ATL Reference Count Profiler is for calls to Microsoft's Active Template Library. The VCL Profiler is for calls
to Borland's Visual Control Library. Both track object allocations by library template (<CFontNotifyImp>) or class
(TLabel), and errors raised by the library. These are further extensions to the health-check capabilities available.
Besides showing the relationship between your application code and its library, these two profilers can point out
one particular problem – memory fragmentation due to the creation of many small objects in succession, and their
later destruction.

Getting Started

http://www.automatedqa.com AQtime by AutomatedQA Corp.

22

The Real-Time Resource Monitor does for the ATL and VCL reference counters what the Function Trace
profiler does for the function profiler – it follows library object allocations in real time during the application run.
Very easy to use and quite instructive at times.

Finally, for Borland applications using SQL through the BDE, there is the BDE SQL Profiler, which logs and
times calls to the SQL server.

Preparing a Project for Profiling

AQtime depends on debug information to profile your application. This tells it where functions start and end in
memory, and what source-file functions correspond to what executable section in memory.To use AQtime,
therefore, your applications must be compiled to include debug information.

When your application is ready for final delivery, remember to compile it without debug info to reduce
application size.

Compiler Settings for Borland Delphi
To prepare a Delphi application for AQtime, you must first ensure that it includes TD32 debug info. Follow these
steps:
1. To set compiler options, choose Project | Options from Delphi’s main menu and select the Compiler tab.
2. To include symbolic debug information, in the Debugging section of the Compiler page, check Debug

information.
3. To view variables local to procedures and functions, check Local Symbols:
4. Unless you don't want to use the VCL profilers (see point 6), also check Stack Frames in the code generation

section.
5. To set linker options, now select the Linker tab. In the EXE and DLL options group, check Include TD32

debug info.
6. If you are profiling an ActiveX control, register the “debug” version of this control in the system (See Profiling

ActiveX Controls, OLE Servers and DCOM Servers).
7. Now, if you do not want to use the VCL profilers, VCL Class and Reference Count, you're done. Note that the

point of profiling with the VCL is not directly performance, as is the case when profiling direct application
code. The point of the VCL profilers is rather to track VCL usage.

If you do want your application to support the VCL profilers, you must make sure AQtime has access to the
VCL binary code – as follows.

The simplest way to support the VCL profilers is to uncheck Build with runtime packages, still on the
Packages pageю

If you wish to keep Build with runtime packages (for instance to control exe size), you can still use the
VCL profilers. When you include your application in an AQtime project, you will also have to include the
VCLnn.BPL file, where nn is the compiler main version number, followed by 0. For instance, with Delphi v.
6.0, you should add the VCL60.BPL file. To add a module to an AQtime project, press Add Module on the
Setup toolbar or select it from the Setup context menu.

Compiler Settings for Borland C++Builder
To prepare a C++Builder (BCB) application for AQtime, you must first ensure that it includes debug info. Follow
these steps:

Preparing a Project for Profiling

Copyright © 1999-2001 AutomatedQA Corp. support@automatedqa.com

23

1. To set compiler options, choose Project | Options from BCB’s main menu and select the Compiler tab.
2. To include symbolic debug information, in the Debugging section of the Compiler page, check Debug

information.
Also, to refer this information to source line numbers, check Line Information:

3. Unless you don't want to use the VCL profilers (see point 6), also check Stack Frames in the code generation
section.

4. To set linker options, now select the Linker tab. In the Linking options group, check Create Debug Information.
5. If you are profiling an ActiveX control, register the “debug” version of this control in the system (See Profiling

ActiveX Controls, OLE Servers and DCOM Servers).
6. Now, if you do not want to use the VCL Class, VCL Reference Count or Memory and API Resource Check

profilers, you're done. Note that the point of these profilers is not performance directly. Their point is rather to
track memory and resource usage.

a) If you do want your application to support the VCL profilers, you must make sure AQtime has access to
the VCL binary code. The simplest way to support the VCL profilers is, still on the Linker page, to check Use
debug libraries and then, on the Packages page, to uncheck Build with runtime packages:

If you wish to keep Build with runtime packages enabled (for instance to control exe size), you can still use
the VCL profilers. When you include your application in an AQtime project, you will also have to include the
VCLnn.BPL file, where nn is the compiler main version number, followed by 5. For instance, with C++Builder
v. 5.0, you should add the VCL55.BPL file. To add a module to an AQtime project, press Add Module on
the Setup toolbar or select it from the Setup context menu.

b) To support the Memory and API Resource Check profiler for your application, you must check the Use
debug libraries option on the Linker page. The other option, Build with runtime packages, specifies what
kind of memory management routines the profiler will analyze. You may check or uncheck it according to what
you wish to profile. See Profiling Memory Management Routines and Profiling VCL Applications in the
Memory and API Resource Check section.

Compiler Settings for Borland C++
To prepare a Borland C++ application for AQtime, you simply need to ensure that it includes debug info. Three
steps will do it:
1. To set compiler options, choose Project | Options from Borland C++'s main menu and select the Compiler

topic.
2. To include symbolic debug information, from the Compiler topic, select the Debugging subtopic. Once there,

check Generate Debug Information.
3. To set linker options, from Project | Options now select the Linker topic. In the Linking options group, check

Create Debug Information.

Compiler Settings for Microsoft Visual C++
To prepare a Visual C++ application for AQtime, you must ensure that it includes debug info and select the format
under which it will be generated. Follow these five steps:
1. Choose a debug configuration, by opening your project in Visual C++, selecting Build | Set Active

Configuration… and setting a debug configuration as active for your project. Usually it will look like
<Your_Project_Name> - Win32 Debug.

2. Now, open the Project Settings dialog (press Alt-F7 or use Project | Settings…) and select the configuration
you have set.

Getting Started

http://www.automatedqa.com AQtime by AutomatedQA Corp.

24

3. In the dialog, open the C/C++ page and make sure that Debug Info is set either to “Program Database” or
“Program Database for Edit and Continue”.
For more information on these options review Microsoft Visual C++ Help.

4. You now have set your project to generate debug information when compiling. Next, you must ensure that the
linker saves it. From Project | Settings… select the Link page. There, first set Category to General. Then
check Generate debug info:

5. The last step is to set how the linker will save the debug information. Visual C++ offers three ways; follow the
links for details on how to work each:

• The debug info can be directly embedded into the executable file

• The Program Data Base that VC++ keeps can be generated as an external PDB file (PDB format)

• The PDB info can be converted to the older DBG format and generated as an external DBG file
AQtime can work with all the options Visual C++ offers for generating debug information. Profiling

applications for which the debug info is in an external file (PDB or DBG) requires a specific Microsoft dll –
DbgHelp.dll. It is included in AQtime's installation package.

Once you have set the compiler and linker options correctly, rebuild your application and it will be ready for
profiling. If you are profiling an ActiveX control, however, you should register the “debug” version of this control
in the system (See Profiling ActiveX Controls, OLE Servers and DCOM Servers).

Embedded debug information

To have the Visual C++ linker include debug information as part of the executable file, simply tell it not to output it
as a separate file.
a) In the Project Settings dialog set Category to Customize then uncheck Use program database.
b) Now, set Category to General and uncheck Enable profiling.

Generating debug info as an external PDB file

In the Link page of the Project Settings dialog:
a) Set Category to Customize.
b) Check Use program database.
c) Enter the PDB file name you want into the Program database name edit field.

Generating debug info as an external DBG file

In the Link page in the Project Settings dialog:
a) Set Category to Customize and uncheck Use program database.
b) Then, select the General category and uncheck Enable profiling.
c) Set Category to Debug and select either COFF format or Both formats.

The COFF format is necessary for AQtime to read basic debug information, but the information it holds is
limited. "Both" provides AQtime with line information to complement the COFF information. The resulting
dbg file will be bigger, but the AQtime line profilers will be able to work. With COFF only, there is no
information below the function level, so only function profilers will work.

d) At this point, you have directed the linker to include debug info in the exe, using the format(s) you specified.
When you have rebuilt the application, the last step is to use Rebase.exe (a command-line utility that comes
with Microsoft Visual C++) to extract the debug info into a DBG file. For instance:

Preparing a Project for Profiling

Copyright © 1999-2001 AutomatedQA Corp. support@automatedqa.com

25

rebase –b Ox10000000 –x . your_program_name.exe

Usually, Rebase is installed into the <Visual C++ directory>\BIN folder. For more information on the utility,
see Microsoft documentation.

Compiler Settings for Microsoft Visual Basic
Microsoft Visual Basic can generate debug info in either of two ways:

• Debug info generated as an external PDB file

• Debug info included in the executable file
AQtime supports both forms – just follow the links. Profiling applications for which the debug info is in an

external file (PDB or DBG) requires a specific Microsoft dll – DbgHelp.dll. It is included in AQtime's installation
package. See also Profiling Applications with Debug Info in PDB or DBG Files.

Debug info, generated as an external PDB file

Open your project in Microsoft Visual Basic. Then:
a) Select Project | Project Properties… to open the Project Properties dialog.
b) Move to the Compile tab and check Create Symbolic Debug Info.

When the Create Symbolic Debug Info option is active and the LINK environment variable is not set, Visual
Basic generates debug info as an external PDB file. It's that simple!

Debug info, included into the executable file

Compiling an executable file with embedded debug info is achieved in exactly the same way as compiling it with
external debug info, except that the LINK environment variable must be set. Setting this is a totally separate
operation, which you need to carry out outside of Visual Basic before compiling.

So, simply follow the steps in the Debug info, generated as an external PDB file section to set Visual Basic to
generate debug info. Here are the additional steps for setting the LINK environment variable so VB integrates the
debug info into your executable. The first recipe below will work no matter what your operating system. The other
recipes are simpler, but they vary according to operating system:

Windows NT, Windows 95, Windows 98, Windows 2000
1. Open an MS-DOS Prompt. You can use Start | Programs | Command Prompt.
2. Move to the folder that contains Microsoft Visual Basic. Do this by typing the disk name, for instance "c:", then

Enter, then "cd", a space and the full path – for instance, "cd \visual basic". then Enter
3. Typee the following command, followed by Enter:

set link=/pdb:none
4. Launch Visual Basic from the MS-DOS command prompt by typing the name of the exe file, for instance

"vb6", then Enter.

Windows NT only
1. Open Control Panel.
2. Double-click System to open the System Properties dialog.
3. Within the dialog, select the Environment tab.

Getting Started

http://www.automatedqa.com AQtime by AutomatedQA Corp.

26

4. In the Variable field enter the word link
In the Value field, enter: /pdb:none

5. Press Set to add the variable to the environment.
6. Press Apply and close the dialog.
7. Start Microsoft Visual Basic in the normal way.

Windows 95/98 Only
1. Make a backup copy of the c:\autoexec.bat file, so that later you will be able to undo changes quickly.
2. Open the autoexec.bat file with any text editor.
3. Add the following line to the autoexec.bat file:

set link=/pdb:none
4. Save the autoexec.bat file and close the text editor.
5. Reboot your computer.
6. Start Microsoft Visual Basic.

Windows 2000 Only
1. Open Control Panel.
2. Double-click System to open the System Properties dialog.
- Within the dialog, select the Advanced tab.
- Click on Environment Variables… to open the Environment Variables dialog.
- In this dialog, in the System Variables group, press New… to open the New System Variable dialog.
- In the Variable Name field enter the word link.

In the Variable Value field, enter: /pdb:none
6. Press OK and close the dialogs.
7. Start Microsoft Visual Basic.

When you re-compile your application, remember that Create Symbolic Debug Info must be checked. . Also,
if you wish to profile an ActiveX control, you must register the “debug” version of this control in the system (See
Profiling ActiveX Controls, OLE Servers and DCOM Servers).

Compiler Settings for GCC
The current AQtime version must get debug information in the stab (symbol table) format, so you must use the
GDB extension for stab.

To generate debug information in stab format, use either the -g or the –ggdb compiler option.
-g means "debug information in the format native to the operating system", and stab is OS-native for Cygwin.
-ggdb means "debug information in the format native to the compiler", and again this is stab for Cygwin.

Remember that future versions of gcc may use a different default debug information format. For more
information on gcc arguments controlling the creation of debug information, see the Options for Debugging Your
Program or GNU CC topic of the GCC Compiler Guide.

Profiling a Project

Copyright © 1999-2001 AutomatedQA Corp. support@automatedqa.com

27

Profiling a Project

Throughout the AQtime Help system, we will use the generic term profiling for the use of any of AQtime's test
tools. Usually, but not always, a complete profiling operation involves the following steps:

•••• Compiling your application with debug information

•••• Opening the project (application) in AQtime

•••• Controlling what to profile

•••• Selecting the profiler to run

•••• Doing one profile run

•••• Analyzing the results

Opening a Project

Your AQtime project is simply your current "work site" in AQtime – application, modules, profiling parameters,
etc. Recent results for the project are kept reference, and you can save them permanently also. So the project is also
your set of available past results.

Opening a project means specifying the application you want to profile now.
Before you open a project, make sure you have compiled your application with Debug Information.

Then, just use File | Open… on the main menu, or the Open button on the toolbar, or simply Ctrl-O. Then
browse for your application in the standard file-open dialog. To the right of the Open button, there is a down arrow
which will open a list of the applications you most recently used for projects in AQtime. This saves browsing.

AQtime profiling can extend to statically or dynamically linked DLLs, as well as ocx, bpl or dpl modules. To
profile within a dll or other module, set your project to your main exe, then go to the Setup panel and use the
context (right-click) menu. You'll find Add Module…, which leads to a standard multi-file Open dialog. You can
add as many modules, from as many folders, as you wish.

Once your project is open in AQtime, you can see a list of all object modules (units) and their functions in the
left-hand pane of the Setup panel:

Getting Started

http://www.automatedqa.com AQtime by AutomatedQA Corp.

28

Controlling What To Profile

Profilers yield a mass of information. The trick in using them is to, as well as you can, ask only for the kind of
information you need at the moment, get it, then begin over again, using what you've just learned to refine the
question you are asking. In other words, you dig down progressively.

So, even more important than what information a profiler can provide is what about it will provide it. A good
profiling tool is one of which you can ask very restricted questions easily, get answers, then re-tune your question.
Otherwise, the important information gets lost in the mass of results which, at the present moment, are of no
importance or, worse, a distraction. (Also, a few profilers seriously add to execution time, so you don't want to wait
while they gather information you won't need.)

A lot of the advantages of AQtime reside in the ease of use, variety and flexibility of the means it provides you
with for controlling what gets profiled in any given run. All of them work on the exclusion principle: If a given
means says something will not be profiled, it will not be. If it doesn't say that, or it says the code "will" be profiled,
then the code will only actually be profiled if all the other means permit. From the very general to the very local,
these means group into four categories:

Means for excluding code from profiling. Code can be excluded by source file or by function and, as always,
any number of files or functions can be excluded. Once code is excluded in this way, it will never be profiled until
you change the settings. This overrides the three other categories. The general name for these means of exclusion is
"system files"; it is a bit precise, but it's uncomplicated. See Excluding "System" Files and Functions.

Means for defining code areas to profile. Areas are a central concept in AQtime. Any number of files, classes
or functions can be included in an area, and any number of areas can be checked (or unchecked) for profiling in a
given run. Furthermore, each element in a checked area can also be checked or unchecked. Areas are a primary tool
for progressively refining what you want profiled. As noted, code correctly checked-in this way only gets profiled if
all of the other three ways permit it. But what is not checked doesn't get profiled on this run, period. Because
sometimes you may want to put an entire class or unit in an area, except one or two elements, in addition to the

Excluding "System" Files and Functions

Copyright © 1999-2001 AutomatedQA Corp. support@automatedqa.com

29

normal Including areas there are Excluding areas. Since nothing gets profiled in any case if it is not in an Including
area, the point of Excluding areas is only this, to provide an easy way of removing some sub-elements from a larger
element added to an Including area. See Defining Areas To Profile and Checking Elements to Profile.

Means for defining when code will be profiled. Triggers are another central concept in AQtime. They apply
only to the three function profilers, and they are the only means of controlling profiling on a thread basis. There
are on-triggers and off-triggers. An on-trigger is a function that turns profiling on when it begins and turns it off
(unless another trigger is running) when it ends. Code that is correctly checked in the Area system, and not
excluded as a "system file", will be profiled only when it is called from a trigger function in the same thread,
directly or indirectly. On-triggers always get profiled themselves even if outside any profiling Area. Off-triggers are
the opposite. While they're running, whatever profiling would be going on in their thread is turned off. If there are
no trigger functions, then profiling is always on by default (the application is the trigger). See Using Triggers and
Setting Up Triggers.

Means for turning profiling on and off during the run. There are two such means. The Enable/Disable
Profiling button on the toolbar button can turn profiling off at any time while the application is running. When it is
"on" (the default), of course it only enables profiling as restricted according to the three points above. This is a
really quick, no-fuss, no-mess way to restrict profiling to a given trouble spot – once you know where it occurs. Its
drawback is that you can never repeat the run exactly; for run-to-run comparisons, Triggers are the tool to use. See
Enable/Disable button details. The other means of doing this is from application code. See Enabling and Disabling
Profiling From Application Code. For what goes on during a profiling run see Doing one profile run.

Excluding "System" Files and Functions

All the means listed in Controlling What To Profile are actually means of excluding code from profiling, or of
restricting profiling to certain times during the run of the application. The object of this topic is the means of
excluding files or functions that you will "never" want to profile (not quote marks), either in any application, or in
the current project. In other words, here we're talking about exclusions that are global AQtime settings, or whole-
project settings. More-controlled exclusions are better defined through the Areas facility.

The general terms for these overall exclusions are "system files" or "system functions".
But first, note that AQtime will not profile files for which it has no source information. This is a default setting,

and can be overridden by modifying the Registry. From that point, your results may vary. Unless you have a serious
and overriding motive, leave the default the way it is. In the opposite case, see Exclude Files with No Source Info in
on0line help.

So, by strong default, the Win API, for instance, is excluded. But you might wish to generally exclude code for
which the source is present, but which you don't mean to touch, such as the runtime libraries of your various
development tools. These are what we, in approximative fashion, call system files.

The first three items on the Options submenu from the main menu deal with this. Item two is System Files and
item three is System Functions. Click on the links for details. The point of System Functions is that there are files
you might wish to profile, but always skipping some large functions which clog up the profiling results, and which
you don't normally mean to profile.

Both of these settings are global to AQtime, they work equally for all projects. There are times where you might
wish they weren't so restrictive. Rather than try to undo and redo them, you may use the first item on the Options
submenu, Ignore System File Settings, which is normally off but can be checked on –- and then back off to restore
normal behavior. If you choose Ignore on a serious project, make sure that you enable other means of restricting
what gets profiled. See Controlling What To Profile.

Finally, you can also define "system" files to exclude from the current project only. This is done through the
System Files item of the Project submenu. See Project System Files.

Getting Started

http://www.automatedqa.com AQtime by AutomatedQA Corp.

30

Defining Areas To Profile

AQtime offers several means of restricting what parts of an application get profiled. Areas (with the associated
checking) are perhaps the most important of these means. But they work in association with the other means. In the
end, what gets profiled is what currently falls under no restriction of one kind or another. See Controlling What To
Profile for full details.

But first note that certain profilers ignore Areas and checking: VCL Class, Reference Count, Platform
Compliance, ATL Reference Count, Memory and API Resource Check and BDE SQL profilers. They always
profile the entire project. The rest of this topic only applies to the other profilers.

Once a project is open (that is, an application has been selected for profiling, see Opening a Project), the Setup
panel is where you set and change most parameters that will apply across profilers. These are Areas and Triggers.

Areas are collections of elements to profile. Elements may be source files, classes or single functions. An
element may be lodged in more than one area. The reason for having several areas is that an area can be turned on
or off by checking or unchecking it. Each area represents, if you wish, a "typical profiling interest" for you. Each
profile run can take in one or several areas. (If it takes in none, it profiles nothing, unless it's using one of the
whole-application profilers listed above.)

By default, an Area is Including – it adds elements to the profiling list. However, sometimes you may one to
include almost all the methods from a class, or might wish to include a unit, but skip two functions in it. You can
always do this by adding the wanted elements one by one to an (Including) area. But, for convenience, you also
have the option of adding the entire class or unit to an Including area, and then defining a special Excluding area to
prevent the profiling of the few sub-elements you wish to skip.

So, an Area by itself doesn't define what you will profile, but what you might wish to profile. What will actually
get profiled in a given run, barring other restrictions, is only the checked elements within the checked areas, barring
their also being checked in an Excluding area. Checking is the object of another topic, Checking Elements to
Profile. The object of this one is how to build up and maintain the collections of checkable elements, that is, Areas
themselves.

Defining Areas To Profile

Copyright © 1999-2001 AutomatedQA Corp. support@automatedqa.com

31

The right-hand pane of the Setup panel holds two lists, Areas and Triggers, with Areas on top. The separator
between the two is moveable; make sure you do see the Areas list. Here is how you manage it –

When you begin a new project, there is one preset area, FULL CHECK – the entire project, with no separate
elements at all. This requires no management – check it if you want everything, leave it unchecked otherwise.

For any normal area, first you need to add it to the list. (It will start out empty.) Click on Add area… in the
context (right-click) menu and give the area a name in the edit box provided. By default, this will be an Including
area, but you can click the Excluding radio button in the dialog to make it an Excluding area. Once you close the
dialog, the new area will appear in the Areas list, with a big + in its icon if it is an Including area, else a big -.

Add elements to the area. The easiest way to do this is to go to the left-hand panel. This displays a treeview of
the entire application, any part of which you can expand or contract. You can make single or multi- selections in the
view, using click, shift-and-drag or Ctrl-click. You can for instance select an entire unit, then unselect parts of it by
Ctrl-clicking them off. You add the selected elements to the area you want by dragging from the tree-view and
dropping onto the area in the right-hand pane.

The other way to add elements to an area is to open the context menu on the area and use Add Units (source
files), Add Procedures (or functions, or methods) or Add Classes.

Both of these methods can be used to add elements at any time to any existing area.
Elements can also be removed at any time. They can be dragged away from the area, and dropped onto the left-

hand pane. More conveniently, you can uncheck the elements you wish to remove, then use Remove Unchecked
Elements from the context menu. Alternatively, you can check only the elements to remove and use Remove
Checked Elements.

Remember that you don't have to use an area as-is. The point of adding or removing elements is to create a
"stored definition", which you can later trim simply by unchecking elements. It is perfectly reasonable to run a
profiler on an entire area, then begin unchecking elements for each successive runs, as you eliminate the
uninteresting parts.

Getting Started

http://www.automatedqa.com AQtime by AutomatedQA Corp.

32

Be careful that when you profile a function, part of its execution time will be spent calling other functions,
which we call "child" functions (it's the calls that are child calls, actually). Unless the child functions are part of the
profiling area, you will not be able to narrow down your profiling to find bottlenecks outside the main function.
Profiling results can discriminate between a function's own execution time and its overall execution time, "with
children". But if you want to know about the children themselves, they have to be added to the profiling area. See
Function Profiling Restriction.

Checking Elements to Profile

Areas are collections of elements (units, classes or functions) which you keep together because you might want to
profile them. In other words, the Areas list is a repository of profileable elements grouped into collections called
Areas, and an element may belong to more than one collection.

Normally, as you start profiling an application, you use simple profilers (such as Hit Count) over broad areas.
Once you better know what you want to track, you may use profilers that yield more detailed information (such as
Tracing), but run them over smaller areas. So, in an ordinary profile test, the pattern is that, from run to run, you set
Areas so as to profile less and less.

On any run, only the Areas you have checked will be profiled. If no Area is checked, no profiling will occur.
But very often you will also want to trim down within an Area. Open any Area in the tree view, and you see the
elements you put in it. You can temporarily remove any element from the profiling by unchecking it individually.

You can also use the common multi-select commands (Shift-drag and Ctrl-click) to select a larger number of
elements at once, then use the context (right-click) menu's Check Selected or Uncheck Selected commands.

When you begin a new profiling session, remember to open the Areas you have checked, so as to see what
elements are currently checked or unchecked within them. If you check an Area, only the currently checked

Using Triggers

Copyright © 1999-2001 AutomatedQA Corp. support@automatedqa.com

33

elements in it will be profiled. If an Area is not checked, then none of its elements appear checked. Checked
elements only show up once the Area is checked.

All of the above is meant for the normal, Including, areas. The elements of Excluding areas only become
excluded if their area is checked, and they themselves are checked. Normally, you will simply check any Excluding
area when you check the Including area for which it holds exceptions.

Using Triggers

Triggers are an AQtime facility allowing better control of profiling under the three function profilers, Function
HitCount, Function Trace and Function Profiler. "Triggers" include three linked settings, On-Triggers, Off-Triggers
and Initial Profiling Status (Starting and New).

AQtime offers several means of restricting what parts of an application get profiled. Triggers provide a crucial
means to fine-tune exclusions, but they work in association with the other means. In the end, what gets profiled is
what currently falls under no restriction of one kind or another. See Controlling What To Profile for full details.

Especially, since Areas and Triggers are rather similar, it is important to understand that, no matter what
Triggers and Initial Status may decree, nothing will get profiled if it is not checked in the Areas section. The one
exception is the on-trigger function itself, which doesn't need to be checked in Areas to get profiled. But the
functions it calls will not be profiled if they are not checked.

The purpose of Triggers is to allow profiling to come on when certain functions (on-triggers) are executing
(including during their calls to "child" functions), or on the contrary to be turned off (off-triggers). With Areas and
checking, you set what you never want profiled during the current run (i.e., everything but the checked elements).
With Triggers and Initial Status, you set in what part of the execution path you want to enable profiling, or to
disable it. It's like having a very smart robot to press the Enable/Disable Profiling button at the right moments –
perhaps thousands of times in a run.
Technically, what triggers do is very simple to explain –

• For any given thread, at any given moment, profiling status is "enabled" or "disabled". Profiling actually
operates in a thread if, one, status for that thread is "enabled" and, two, nothing else excludes the current
function from profiling.

• The Enable/Disable Profiling button is an onscreen way of controlling profiling status by hand while the
application runs. If it is pressed-in (), profiling status is as set otherwise. When you unclick it (),
profiling is turned off for all threads. When you press it back in, you re-enable profiling, according to
whatever is otherwise set for the application at that point (not as it was when you disabled it).

• If there are triggers of any kind, the Initial Profiling Status settings define whether profiling is enabled or not
before any trigger starts executing. After that, they have no effect. Likewise if there are no triggers at all.
There are two Initial Status settings, one for the application's starting thread, and one for any new thread
created in the course of execution. In other words, Initial Profiling Status for Starting Thread "triggers"
profiling on or off at application launch, for its starting thread, and Initial Profiling Status for New
Threads triggers it on or off on the creation of each new thread.

• When an on-trigger function begins executing, it saves the current profiling status for its thread and enables
profiling for that thread. It also turns profiling on for itself, independent of Area settings. These still apply to
everything it calls. When it reaches the end of its execution (after perhaps hundreds of calls, sub-calls and
sub-sub-calls), it restores the thread's profiling status as it found it.

• When an off-trigger function begins executing, it saves the current profiling status for its thread and turns
profiling off for that thread. When it reaches the end of its execution, it restores the thread's profiling status
as it found it.

Getting Started

http://www.automatedqa.com AQtime by AutomatedQA Corp.

34

Suppose, Proc_B is an off-trigger routine, profiling is currently enabled and the FULL CHECK area is used:
Proc_A;

Proc_B // off-trigger routine

Proc_D; // Proc_D and Proc_E are child routines of Proc_B,

Proc_E; // that is, they are called within Proc_B.

// Proc_D and Proc_E are not profiled.

Proc_C;

As profiling is enabled, and FULL CHECK is on, AQtime profiles Proc_A. When the application enters Proc_B,
profiling is disabled for that thread. So Proc_D and Proc_E are not profiled. When Proc_B exits, AQtime restores
the profiling status as it was – enabled -- so Proc_C is profiled.

This topic has explained the use of triggers. It has not explained options for triggers. And it has not explained
how to set them up. Both questions are the object of the next topic: Setting Up Triggers.

Setting Up Triggers

Before proceeding to set up triggers, make sure you have read Using Triggers. A few reminders --

• Triggers work in conjunction with the other means of selecting what to profile. Execution is actually profiled
only when all means say "yes". See Controlling What To Profile.

• Of all means of selecting what to profile, Triggers are the only one that can select on a thread basis.

• "Triggers" include three linked settings, On-Triggers, Off-Triggers and Initial Profiling Status (Starting and
New).

• Triggers only apply to the function profilers: Function HitCount, Function Trace and Function Profiler.
Triggers are defined and controlled in the Setup panel. The right-hand pane holds two lists, Areas and Triggers,

with Triggers at the bottom. The separator between the two is moveable; make sure you do see the Triggers list.
In that list, a "trigger" is a collection of potential trigger functions of one type, either on- or off-. No triggers

operate at all unless one such collection (at least) is checked. And in the collection only those triggers operate
which are checked also.

Up to this point, the mechanics of managing Triggers, including checking them on or off, is identical to that of
managing Areas. We refer you to Defining Areas and Checking Elements for details.

Now for the points that are different with setting up Triggers:

• Note that if one element of a Trigger is a unit, for instance, and you check it, then each single function in that
unit becomes a trigger. Uncheck it and no function in the unit acts as a trigger, unless it also belongs to some
other checked collection, and it is checked in there. In other words, you should be more conservative when
including elements in Triggers than when including them in Areas. After a certain point, more Triggers
simply mean more confusion, when the whole purpose of Triggers is to clarify profiling results.

• A "trigger" collection is defined as holding on or off triggers (one type per collection), not just triggers.

• There are two default triggers always at the top of the list, which set the profiling status at the beginning of
threads, before specific triggers click in. (After that, they have no effect.) These are name Initial Profiling
Status for Starting Thread (that is, for the application's main thread) an Initial Profiling Status for New
Threads. (that is, for secondary threads – one status for all threads). These can be set on (profiling allowed
until a trigger operates) or off (no profiling until a trigger operates).

Selecting a Profiler

Copyright © 1999-2001 AutomatedQA Corp. support@automatedqa.com

35

• Except for the Initial Status triggers, each trigger can be tuned regarding after how many calls a trigger will
start operating, and then for how many calls (after which it will become inoperative). These two options are
themselves affected by another option – is the call count taken over all threads, or over each thread
individually? This yes-no option, which sets the meaning of the other ones explained below, is For All
Threads. Remember that, whether or not calls are counted over all threads, triggers only act on their own
thread.

• The Pass Count option allows the trigger function or functions to be called a certain number of times before
they act as triggers. For instance, this lets you skip the startup phase of your application. Pass Count 3 means
"only act as trigger on the fourth call". Default is 0, operate from first call.

• The Work Count option then sets how many consecutive calls will act on the trigger (to allow profiling or to
disallow it), before the trigger stops acting again. This is a way to limit the amount of data gathered at the
point where it just repeats what's known. 0 is again the default, but here it doesn't mean "never activate", it
means "stay activated to end of run".

• Finally, the Cycling yes-no option (default no) sets whether the pass-count-work-count cycle will repeat after
work count + 1 is reached and the trigger is disactivated. A cycling trigger is a way to sample application
behavior through various phases without amassing data for every single call.

Selecting a Profiler

One AQtime "run" is one execution of the application under one profiler. The profiler to be run is set from the

 dropdown list on the standard toolbar, "Select a profiler", just to the right of the Run
button.

The dropdown list is actually a treeview. Individual profilers are listed when you open a branch.

See also AQtime Profilers.

Doing One Profile Run

Before doing your first run of your application under an AQtime profiler, you must have completed these
preliminary steps –

• Compiling your application with debug information

• Opening the project (application) in AQtime

• Controlling what to profile

• Selecting the profiler to run
Between each run, you are likely to change what to profile, and fairly often to change profilers also. And, during

the life of the project, you will of course frequently recompile your application after making changes.
Now, with the four preliminary steps completed, there are a few more checks to go through before starting the

run:

• Check that you have set the running conditions as they need to be. For an exe, these are the (possible)
runtime arguments, for a DLL, the (necessary) host application. Most often, you don't have to do anything,
because you are testing an exe that takes no parameters, or because you simply want to keep the existing
settings. To check or change conditions, use Project | Parameters… from the main menu. This leads you to
the Run Parameters dialog, which has a box both for parameters and for host application. See Profiling
Dynamic Link Libraries in on-line help.

Getting Started

http://www.automatedqa.com AQtime by AutomatedQA Corp.

36

• Make sure that the necessary modules (such as statically linked DLLs) can be loaded.

• Check that the Enable/Disable Profiling button on the Standard toolbar is in its normal pressed-in state
(as shown), unless you want to start with profiling turned off, overriding your Trigger settings.

• You launch the application by pressing Run on the Standard toolbar, or F9 on the keyboard.

Some points while executing the application:

• Run the operations that you need to profile (for instance, those where you suspect a bottleneck). You might
plan your run before starting, to be sure you hit all the high (or rather, low) points.

• If you need time to reflect on what to do next, or simply to check screen output, don't hesitate to use the
Pause Program button on the Standard toolbar. Press Resume to resume execution.

• You can use the Enable/Disable Profiling button to suspend profiling, but not execution, while you run
through parts of the application you don't need to profile. See Controlling What To Profile for the caveat.

• If you want to force and end to the application process, exit the profile run and get results, press Reset.
This may be needed if the application cannot normally be ended without rebooting, logging off or some other
drastic intervention, or if it simply has stopped responding.

• Note that some profilers, with some over-enthusiastic settings, may slow application execution to the point
where you mistake this for a crash.

• Once you have gone through the operations you wanted, exit the application. Do not accumulate needless
profile data.

Once you exit, the resultant profile will be displayed in the AQtime Report panel.

Analyzing Profiler Results

After profiling your application, results are displayed in the Report panel, usually on the Results tab:

Analyzing Profiler Results

Copyright © 1999-2001 AutomatedQA Corp. support@automatedqa.com

37

Organization

This panel shows a table where each row corresponds to a function or line that has been profiled. When you select a
row, other panels are updated to display information for that function or line. (Not all panels apply to all profilers).

• The Call Graph panel displays the call information for the selected function.

• The Details panel holds additional profiling results for the function, e.g. the call stack, "child" and "parent"
functions, etc.

• The Disassembly displays binary code generated for the function or line.

• The Editor panel displays the source code of the selected function or line.

• The Event View panel is unaffected; it simply logs events that occurred during the profile run.

• The Graph panel is unaffected; it displays overall results in a comparison graph.
For multithreaded applications, AQtime stores profiling results for each thread as well as results for whole

application. To view thread results, select the desired thread from the Explorer panel or from the Threads
dropdown list on the Standard toolbar. See Profiling Multithreaded Applications.

Getting Started

http://www.automatedqa.com AQtime by AutomatedQA Corp.

38

Managing results

• You can sort results by any column.

• You can group results by one or several columns.

• You can search results using the Find dialog or the Incremental Search feature.

• You can add summary fields.

• You can filter results.

• Better yet, you can apply a view from the many pre-defined ones, or from those you define yourself. A view
combines a filter, a layout for the Report panel and one for the Graph panel.

• You can also compare current results with previous ones to find the effects of changes you made in the
application (or in the way you ran it).

• And you can merge results accumulated over several tests to constitute a benchmark.

Transferring results

Profiling results can be –

• copied to the Clipboard,

• printed using the Print Preview Form,

• exported to text, Excel, html or xml formats (see Exporting Data).

• inserted into application source code (see Inserting Results Into Source Code).

More usability features

• While you use the Report or the Details panels, AQtime records your movements from item to item. You can
come back to something you selected previously, and then return to where you jumped back from, as with an
Internet browser. Use the Back and Forward buttons on the Report toolbar. See AQtime Panels.

• AQtime's visual means for arranging grids apply to the display of results, of course. Especially, you can:
- change column width and ordering,
- hide or show columns (not all columns are displayed by default).

Views Implementation

 A View is a group of settings for displaying results. Creating and using views (including the many pre-defined
ones) is a great way to accelerate, simplify and clarify the analysis of your results. A view can serve not simply as a
preset format, but as a preset question to which you get an immediate, clear answer by switching to the view. Many
of the pre-defined views are of that kind, and you can define more for your own frequently asked questions.

A view is defined for one specific profiler, and stored in the profiler's single .qtview file, which groups all the
views currently defined for it. By default, the stored settings are for:

• filter expression,

• column layout for the Report table,

• Graph panel layout.
Some later plug-in profilers may add to the items that are stored in their views.

Views Implementation

Copyright © 1999-2001 AutomatedQA Corp. support@automatedqa.com

39

You can add a new view to store your current filter and panel settings, for the current profiler, simply by
pressing the Define Views button on the Standard toolbar and using the ensuing Define View dialog. In that
dialog, you will also find that you can export or import views between profilers or between different AQtime
installations.

The views available for the current profiler are displayed in the View dropdown list on the Standard toolbar:

Until you add your own views, this will display the views that are shipped with AQtime, and which are defined
for all applicable standard profilers. The rest of this topic is devoted to capsule explanations of these standard
views. They are:

Current
Default
By Class Name
By Source File
By Unit Name
Top 10 Procedures
Top 20
Covered
Uncoved
Leaked Classes Only
Unreleased Classes Only
Top 10 Procedures (Net Time)
Top 10 Procedures (Time w. Children)
Top 10 Executed Procedures (Hit Count)
Top 10 % (Net Time)
Top 10 % (Time w. Children)
Top 10 %
Top 5 %
Procedures Covered less than 50%

Getting Started

http://www.automatedqa.com AQtime by AutomatedQA Corp.

40

Default View is what AQtime uses when executing AQtime for the first time. If you change a series of
parameters for the Report table or Graph diagram and then select Default View, AQtime automatically restores its
standard settings.

Current View is simply the name for whatever settings are currently active. It is not a stored view, but you can
make it so by saving it under some name using the Define View button, right to the left of the list. You will
then be able to retrieve it for re-use. Note that it applies only to the current profiler (unless you later use export and
import in the Define Views dialog).

By Class Name, By Source File, By Unit Name allow you to group the Results table by the corresponding
fields. These views are available for all profilers except VCL Class Profiler and Reference Count Profiler.

The Top 10 Procedures view is enabled only for the Function HitCount, Function, and Function Sampling
profilers.

• For Function HitCount Top 10 shows the ten most used procedures.

• For the Function Profiler Top 10 shows the ten procedures that take the longest time to execute – a quick
performance measurement.

• For Function Sampling Top 10 shows the ten most used procedures – a different quick performance
measurement.

The Top 20 view is available only for the Line HitCount and Line Sampling profilers.

• For Line HitCount Top 20 shows the twenty lines that have been executed the most times.

• For Line Sampling Top 20 shows the twenty lines of code which take the longest time to execute. (The 20
slowest lines of code based on processor execution).

The Covered and Uncovered views are available for the Function Coverage profiler only. The Covered view
displays all executed procedures. The Uncovered view displays all procedures that did not execute.

The Leaked Classes Only view is for the VCL Class Profiler. It filters the results to show only the objects not
freed after program termination. It is named "classes" because the Class Profiler displays the class in the Report
panel and the instance in Details.

The Unreleased Classes Only view is for the Reference Count Profiler. It filters results to show only classes
implementing interfaces for which the reference count has not been brought back to 0.

The Top 10 Procedures (Net Time), Top 10 Procedures (Time w. Children), Top 10 Executed Procedures
(Hit Count), Top 10 % (Net Time) and Top 10 % (Time w. Children) views are available for the Function
Profiler only.

Top 10 Procedures (Net Time) displays the ten procedures that execute the slowest in their own code (net),
independent of the functions they call.

Top 10 Procedures (Time w. Children) displays the ten slowest procedures, counting all time spent between
entry and exit, including "child" calls.

Top 10 Executed Procedures (Hit Count) displays the ten procedures called most often.
Top 10 % (Net Time) is the same as Top 10 (net), except that the list is extended to the top tenth of all

procedures (typically a hundred or more).
Top 10 % (Time w. Children) is the same as Top 10 (w. Children), except that the list is extended to the top

tenth of all procedures (typically a hundred or more).
The Top 10% and Top 5% views are available only for the Function Sampling and Line Sampling profilers.

They display the 10% or 5% worst-performing functions or lines, that is the ones that occupy the most CPU time in
their own code).

Views Implementation

Copyright © 1999-2001 AutomatedQA Corp. support@automatedqa.com

41

The Procedures Covered less than 50% view is available only for the Line Coverage profiler. It displays
procedures where fewer than half the source lines were executed.

Panels Reference

http://www.automatedqa.com AQtime by AutomatedQA Corp.

42

Panels Reference

Call Graph Panel

The Call Graph panel is used with the Function Profiler and the Function HitCount profiler (when its Call
relationship tracking option is enabled) to display the hierarchy of calls for the function double-clicked in the
Report panel:

Each function is represented as a rectangle and the arrows show the sequence of function calls. In the upper part
of the rectangle there is the function name, in the lower one, profiling results. Profiler option Display in Call Graph
sets what results will be shown in the lower part of the function rectangles. (See Profilers Options - Function
Profiler and Profilers Options – Function HitCount).

The numbers at the arrow starts (from parent functions) specify how many times the highlighted function was
called from the parent one. Those at the arrow heads (towards child functions) specify how many times a child was
called from the highlighted function. Recursive calls are marked with .

The number of "child" and "parent" levels in the chart is specified by options of the same name (Number of
child levels and Number of parent levels). Increase these settings to show more of the function call hierarchy.
Decrease them to have a simpler display.

Details Panel

Copyright © 1999-2001 AutomatedQA Corp. support@automatedqa.com

43

Double-clicking on a function rectangle in the panel has the same effect as double-clicking on that function in
the Report panel – the Call Graph panel updates to highlight the clicked function and show its parents and children,
and other panels update accordingly (Editor, Disassembly, etc. -- see AQtime Panels).

The context (right-click) menu has Go to Child Procedure, Go to Parent Procedure and Go to Current
Procedure to help navigating the hierarchy when it is large. It also has Zoom In, Zoom Out, No Zoom and Fit to
help you get the view you want.

Details Panel

The Details panel displays additional results for the line selected in the Report panel with a number of profilers.
The details displayed depend on the profiler. See

• Function HitCount Profiler - Details
• Function Profiler - Details

• VLC Class Profiler - Details

• VCL Reference Count Profiler - Details

• Memory and API Resource Check - Details

• ATL RefCount Profiler - Details

• BDE SQL Profiler - Details

• Unused VCL Units Profiler - Details

You can arrange the Details panel the same way you can organize other AQtime panels.

Function Profiler - Details
When using the Function Profiler the Details panel looks like this example:

Panels Reference

http://www.automatedqa.com AQtime by AutomatedQA Corp.

44

There are two panes. The upper, Parents, displays procedures that call the function double-clicked in the Report
panel; The lower, Children, displays the functions it calls.

As always, the only functions shown are those that were profiled. If you have a ParentFunction procedure that
calls a child function and the profiling area includes only the ParentFunction, the child function is not profiled and
the Details panel does not display its results. If a function is costing you some time, make sure you include its child
calls, for instance by making the function a Trigger. (See also Function Profiling Restriction). Otherwise, you'll lose
the ability to tell how much of that time cost goes to child calls.

In the panel, on the left hand of each pane is a chart, which is either a pie chart or a bar chart, depending on the
Chart settings option of Details panel. This chart compares one result for each function on the right side of the
pane. You can select which result is compared by using the context (right-click) menu on the chart section. Each
function line on the right has a Color column that lets you select the color used in the chart for that particular line.

Apart from Color, the columns are similar to those in the Report panel. However, there are some differences:

Parents pane
• The Time (s) and Time with Children columns to not report totals for all calls of the named function, as they

would in the Report panel. They report totals for those calls which called the currently selected function (in
Report).

Details Panel

Copyright © 1999-2001 AutomatedQA Corp. support@automatedqa.com

45

• Time % and % with Children are calculated against the totals for Time (s) and Time with Children in this
pane, not in Report. They give you the relative speed of the parent functions in those calls where they call the
selected function.

Children pane
• The Time (s) and Time with Children columns to not report totals for all calls of the named function, as they

would in the Report panel. They report totals only for those calls that came from the currently selected function
(in Report).

• Time % and % with Children are calculated against the totals for Time (s) and Time with Children in this
pane, not in Report. They give you the relative speed of the child functions among the other child functions of
the selected function.
If the Show the function body in Details option is set for the Function Profiler, there is a line with the name of

the selected function with "(body only)" added. This gives the results for the part of the function that was not child
calls – in other words, the function's own code.

When you double-click a line in Details, the corresponding function is selected in the Report panel and the
Details panel will display the parent and children of the new selected function. Movements between routines are
tracked, as they would be between pages in a Web browser. The Back and Forward buttons on the Report
toolbar allow you to retrace your steps.

Function HitCount - Details
The Function HitCount profiler will gather results to display in Details only if its Details option is on (see Profilers
Options – Function HitCount). When it is in use, the Details panel holds two panes. The upper, Parents, displays
procedures that call the examined function, that is, the function double-clicked in the Report panel. The lower,
Children, displays the functions called by the examined function:

Panels Reference

http://www.automatedqa.com AQtime by AutomatedQA Corp.

46

On the left hand of each pane is a chart, which is either a pie chart or a bar chart, depending on the Chart
settings option of Details panel. This chart compares the hit count for each function on the right side of the pane.
Each line on the right has a Color column that lets you select the color used in the chart for that particular function
(press the ellipsis button).

The same columns appear in Details as do in the Report panel, with a few differences. Color, as just noted, only
exists in Details. Affected By Trigger is absent from Details. Hit Count and % Hit Count are calculated
differently from the same columns in the Report panel.

In the Parents pane, Hit Count only counts those calls of the function on that line, where the function in turn
called the examined function. % Hit Count is this "calling" hit count calculated as a percentage of the sum of all
counts in that column. In other words, % Hit Count tells you where the examined function is most often called
from, where it is most rarely called from, etc..

Likewise, in the Children pane, Hit Count only counts the calls made to child functions by the examined
function, excluding all the hits where they were called from elsewhere. % Hit Count is this value calculated as a
percentage of the sum of values in the Hit Count columns. In other words, it tells you which child function the
examined function called most frequently, least frequently, etc.

Details Panel

Copyright © 1999-2001 AutomatedQA Corp. support@automatedqa.com

47

VCL Class Profiler – Details
 For the VCL Class Profiler, the Report panel shows a list of all VCL classes for which instances were created
during the run. For the class currently selected in Report, the Details panel shows those instances that were leaked,
that is, never freed, and gives the state of the call stack at the point where they were created (Note that the call
stack is traced only if the Stack | Show call stack option is enabled):

The Instances pane holds the list of leaked objects (class name, memory address, object number in creation
order for the class). The Call Stack pane shows the state of the call stack at the moment the currently selected
object was created. An object is selected by double-clicking on its line in the Instances pane. The Call Stack pane
displays the following columns:
Procedure Name Caller.
Class Name If caller is a method, name of its class.
Module Name Module (exe, dll, etc.) where the calling code is located.
Unit Name Unit where the caller is declared.

Panels Reference

http://www.automatedqa.com AQtime by AutomatedQA Corp.

48

Source File File holding the source for the caller.
Line No First line of the implementation of the caller in Source File.
Stack Entry No Caller rank in the call stack. The topmost caller has index 1.

The topmost line details the function which called Create for the selected object. The next line is the function
that had called this one, and so on down the list.

Double-clicking a function in the Call Stack panel will update the Editor and the Disassembly panels. You can
then simply move to those to inspect the function's source or binary code (see AQtime Panels). The Back and

 Forward buttons on the Report toolbar let you move back and forth between functions.

VCL Reference Count Profiler – Details
 For the VCL Reference Count Profiler, the Report panel shows a list of all interfaced classes for which references
were added during the run. There is an Unreleased References column. If a class is selected in Report and
Unreleaded References is not 0 for this class, then the Details panel will show its _AddRef and _Release history
throughout the run, and the state of the call stack on each of those calls. Note that the call stack is traced only if the
Stack | Show call stack option is enabled:

Details Panel

Copyright © 1999-2001 AutomatedQA Corp. support@automatedqa.com

49

The Interfaces pane lists all calls to _AddRef and _Release for the selected (reference leaking) class. It holds
the following columns:

Class Name The class name.
Kind Reference call -- _AddRef or _Release
Instance Address Address of the object with an unreleased reference.
Instance number of the unreleased object (in creation order for the class).
RefCount Number of references to the object after this call was executed.

The Call Stack pane shows the state of the call stack at the moment the call currently selected in the References
pane (by double-clicking). It uses the following columns:

Procedure Name Caller.
Class Name If caller is a method, name of its class.

Panels Reference

http://www.automatedqa.com AQtime by AutomatedQA Corp.

50

Module Name Module (exe, dll, etc.) where the calling code is located.
Unit Name Unit where the caller is declared.
Source File File holding the source for the caller.
Line No First line of the implementation of the caller in Source File.
Stack Entry No Caller rank in the call stack. The topmost caller has index 1.

The topmost line details the function where the _AddRef or _Release call occurred. The next line is the function
that had called this one at that point, and so on down the list.

Double-clicking a function in the Call Stack panel will update the Editor and the Disassembly panels. You can
then simply move to those to inspect the function's source or binary code (see AQtime Panels). The Back and

 Forward buttons on the Report toolbar let you move back and forth between functions.

Memory and API Resource Check - Details
See Memory and API Resource Check Profiler.

ATL RefCount Profiler - Details
See ATL Reference Count Profiler.

BDE SQL Profiler - Details
See BDE SQL Profiler.

Unused VCL Units Profiler - Details
See Unused VCL Units Profiler.

Disassembly Panel

The purpose of the the Disassembly panel is to allow you to check the exact binary source for the results reported
by most of AQtime's profilers, independent of the compiler, version or library behind this code.

When you switch to it, the Disassembly panel shows the last function double-clicked in one of the main AQtime
panels - Report, Details, Event View or Call Graph:

Disassembly Panel

Copyright © 1999-2001 AutomatedQA Corp. support@automatedqa.com

51

The panel's context (right-click) menu also has an Open Binary File item that lets you use it to check any
executable independent of what is showing in other panels.

When Header Information is checked in its context menu, the panel displays a header listing the names of the
source file, unit and function, as well as source file line number, function address in memory, and function length.

If the Display source code panel option is disabled, the main part of the panel displays assembler instructions,
one per line. If it is enabled, source is displayed first and each source line becomes a node that can be expanded into
its assembler instructions. For other formatting options, see Arranging Columns… in the Index.
The panel columns are as follows:

Column Description
Address Starting address of the instruction in memory.
ANSI Value Alternative translation of the binary code into ANSI-string format instead of

dissassembly. Quickly marks out string constants embedded in the code.
Hex Hexadecimal string of bytes composing the instruction.
Instruction Assembler instruction matching the Hex string.
Instruction No Number of the assembler instruction from the beginning of the function.
Instruction Notes An editable field for notes concerning this assembler instruction. The notes are

stored in a single file used by all AQtime project. To edit, use Instruction notes
from the

Line No Source line number in source file.
Mops Count of micro-instructions (micro-operations) in the assembler instruction.
Size Instruction’s size in bytes (i.e., length of its hex string).
Source Line Contents of the source line for the instruction.
Type Icon identifying certain instructions, such as jump, return, call, dd, dw and db.
Target Next address to be executed after a jump, a call, etc.

Panels Reference

http://www.automatedqa.com AQtime by AutomatedQA Corp.

52

Target Procedure Name of the function at the Target address.

You can copy instructions to the clipboard by selecting them and clicking Copy from the Disassembly
toolbar or Disassembly context menu. You can also save them to a text file by using Save to File…. The usual
Ctrl and Shift commands allow for multiple selections (see Selecting Several Records in a Panel).

By clicking on the jump, return or call icons, you can switch to the disassembly for the target
function. (The icon indicates instructions identified as data.) When using these direct jumps, the Disassembly
panel tracks your movements among functions. The Back and Forward buttons on the Disassembly toolbar
or context menu let you move back and forth among those you have previously viewed.

Editor Panel

The Editor panel displays source code. With most AQtime profilers, its gutter area also displays selected results for
the current function or line. The panel updates to display the source for the last function double-clicked in the
Report, Details, Call Graph or Event View panels, unless its source file cannot be found on the search path. (Note
that some compilers, e.g. Visual Basic, can compile the executable without saving its sources to a disk file). You
can also open any source file simply by dragging it onto the panel from Windows Explorer, or by using Open…on
the panel's context (right-click) menu. Open Project Files on the context menu gives faster access to the source for
the current project.

By default, the Editor works in read-only mode. This is controlled by the Read Only checkbox on its context
menu. The current state (Read Only or Read/Write) is always displayed on the status bar at the bottom of the panel.

You can search the file currently displayed by using Find… on the Editor's context menu or on the Editor
toolbar.

The Editor panel uses syntax color highlighting – different fonts and colors for different code elements, making
them easier to distinguish and to locate. The settings are those of the development tool linked to the extension of the

Event View Panel

Copyright © 1999-2001 AutomatedQA Corp. support@automatedqa.com

53

file being displayed. The File extensions for highlighting Editor panel option specifies which extensions will be
displayed according to your settings for Microsoft VC++ or VB, or for Borland Delphi or C++Builder. If an
extension appears in more than one list, the priority goes from Delphi to C++Builder to VC++ to VB. Delphi's is
the default color hightlighting for file extensions linked to no tool.

Note that these settings set both font appearance and font language. If you have set VC++ for Scandinavian
fonts, then the files you associate with it will use the VC++ highlight and Scandinavian fonts.

Event View Panel

The Event View panel displays events that occur within AQtime and the profiled application during profiling. It
also displays brief profiling results and other profiling-related information. Each event is displayed as a parent
node. Some events have child nodes that provide you with additional information about the event.

There are two columns. Event holds the event description, Time, the time of occurrence. If the Time from
application start Event View panel option is enabled, Time is counted from the beginning of the current profile run.
Else, it is the system time. See Arranging Columns… in the Index for the display options Event View shares with
other panels.

To restrict the type of event displayed (see the list below), select Messages Filter… from the context (right-
click) menu. If the panel already has a filter, you can also click on the word Filtered, on the left side. Either
command will bring up the Message Filter dialog in which you can exclude event types by unchecking them.

The context menu also holds Add Comment…, which lets you add comments as "events" into the event list.
The menu also lets you copy selected events to the clipboard or to a file (tab-delimited) through its Copy to
Clipboard and Save to File…items. You can use the usual Ctrl and Shift commands to multi-select events. (See
Selecting Several Records in a Panel).

The event types displayed are as follows:

 Exception Logs an exception raised by the profiled application, with exception code,
name and address, and the call stack, diplayed as child nodes. See Exceptions
in the Event View Panel. The panel's Max consecutive exceptions setting
defines the point beyond which it will stop logging more exceptions until the
next non-exception event.

 Exception Stack These items are simply successive functions in the call stack at the moment of

Panels Reference

http://www.automatedqa.com AQtime by AutomatedQA Corp.

54

an exception. For each, the address, module name, procedure name, etc. are
given. If there is enough information to retrieve them, the best substitute is
displayed, for instance the module address in memory when the name is
unavailable. Double-clicking on any function in the stack will update the
Editor panel to its source code, and likewise the Disassembly panel to its
compiled code, when you switch to either.

 Project Run Logs the start of a profile run.

 Project Suspend Logs the moment a profile run is suspended from the AQtime interface.

 Project Resume Logs the moment a profile run is resumed after being suspended from the
AQtime interface.

 Change Profiler Logs a change of profilers.

 Results Generated Logs the end of result generation after a profile run, and displays a summary of
the results.

 Debug Symbols Read Logs the end of the debug-info reading process at the start of a profile run.

 Module Load Logs the loading of a module (dll, external executable, etc.) by the main
application and gives its base address in memory once loaded and its size in
bytes.

 Module Unload Logs the release of a module by the main application and gives its base address
before unloading.

 Project Loaded Logs opening a project in AQtime.

 String Received Logs and shows a string message generated by AQtime or one of its profilers
or plug-ins for the event list.

 Create Thread Logs the creation of a secondary thread in the profiled application and gives its
thread ID and handle.

 Exit Thread Logs the closing of a secondary thread in the profiled application and gives its
thread ID, handle and exit code.

 Create Process Logs the creation of the profiled application's process and gives its process ID,
handle and base address, as well as the and a handle of its primary thread.

 Exit Process Logs the closing of the profiled application's process, with process ID and exit
code.

 Leak Warns that not all the memory or resources allocated by the application have
been released at the end of its process. This event is generated by profilers that
track memory and resource usage such as VCL Class, Reference Count
Profilers, Memory or API Resource Check.

 Comment This is the equivalent of a String Received event, but for a comment added by
the user via the Add Comment dialog.

 Enter Procedure Logs an entry into a function, when using the Function Trace profiler with
Event View included in its Hierarchy display location setting.

 Leave Procedure Logs an exit from a function, when using the Function Trace profiler with
Event View included in its Hierarchy display location setting.

Explorer Panel

Copyright © 1999-2001 AutomatedQA Corp. support@automatedqa.com

55

Explorer Panel

AQtime's Explorer panel serves to manage the profiling results. It supports the following operations:

• Save the current profiler results for future use.

• Load previously saved results and display them in the Report panel.

• Delete previously saved results when they are no longer of use..

• Merge two or more result sets.

• Compare two or more result sets.

• Export results to a text or binary file.

• Import results from a text or binary file.

• Collect related result sets and organize them into folders on the Windows Explorer model.

Panels Reference

http://www.automatedqa.com AQtime by AutomatedQA Corp.

56

The organization of this display can be modified, as with other panels (see Arranging Columns… in the Index).
If Explorer's Show results for all profilers option is disabled (the default, shown above), it only displays results for
the currently selected profiler. Else it displays a tree with a branch for each profiler, and in each a sub-tree of
folders identical to the tree shown above. See Explorer Options.

All items inside folders are names for result sets, and they can be edited in place. The default name is simply the
date and time that the results were generated. For multithreaded applications, separate results per thread are kept as
sub-items of the whole-application results. Double-clicking on the main results will open the thread-result list.

There are a number of main branches to the results tree. Individual result sets can be dragged from one to the
other, or click-dragged to copy them. They can be deleted by using the Del key or Delete on the context (right-
click) menu. Or they can all be deleted by using Clear All. Generally, the same manipulations are possible in the
Explorer tree as in Windows Explorer, but some are forbidden for obvious reasons – you cannot drag or copy into
Last Results or Merged Results, for instance.

The folders are:
Last Results – The most recent results are automatically kept, up to a certain number, with each new result set

expelling the oldest from the list. The number of result sets kept here is set by the Number of recent results to keep
Explorer panel option, and is five by default.

Saved Results – This stores any result set you have moved or copied to it, or saved by using Save Current (not
Save) from the context menu. Results are not removed from the store until you do it yourself.

Merged Results – The store of result sets obtained by merging (explained below).
Optional Folders – The New Folder item on the context menu lets you add as many main branches as you wish.

All behave like Saved Results. In other words, Saved Results is the default folder, and the folders you add and
name yourself let you put more organization into your store of saved results. Result sets are added by dragging of
Ctrl-dragging.

Merging Results
As long as you are profiling the same build of your application, or builds where the code of interest hasn't changed,
combining result sets can be a major help in getting better statistics. This is called merging. Also, since you can
merge your results later, you are free to do shorter and simpler profile runs on separate aspects of your application.

Exactly how result sets will be merged is defined in the Merge Settings dialog which you can call through
Merge Settings… on the Explorer context menu. Make sure you have this under control first, so that your merged
results will make sense to you. Also, if you are using Borland Delphi 5, you should enable Update procedure
names to Delphi 5 in Explorer Options (and disable it if you are not using Delphi 5).

Merging itself is a two-step operation. First multi-select several result sets (even merged ones), from any folder.
Use Shift-Click and Ctrl-Click to do this. Second, command the merge operation by selecting Merge from the
Explorer toolbar or context menu. Each merged result set stores the names of the source sets.

This can also be automated. In Explorer Options, there is an Auto-merge option. If this is enabled, you can also
specify a Folder name. This is not a normal folder, but a sub-folder that will be created inside the Merged Results
folder on the next profile run. Separate result sets will accumulate there as well as in Last Results, and the first will
be identical to the one in Last Results. The second however will merge this first one with the results of the new
profile run. The third will merge the second with the next profile run results, and so forth.

Comparing Results
The point of getting profile results is usually to improve your code. So, between different builds, it can be
extremely helpful to have a simple way to compare result sets on the values of interest. This is what the Explorer
panel's Compare operation allows you to do.

Explorer Panel

Copyright © 1999-2001 AutomatedQA Corp. support@automatedqa.com

57

What values will be compared, and how the difference will be computed in the case of numeric values, defined
in the Compare Settings dialog, which you can call through Compare Settings… on the Explorer context menu.
Make sure you check this first so that the operation compares what you want and discards what is not of interest. In
fact, there is an Always set up Compare params option in Explorer Options, which will cause the dialog to pop up
whenever you command a Compare operation.

Also in Explorer Options, if you are using Borland Delphi 5 you should enable Update procedure names to
Delphi 5 i (and disable it if you are not using Delphi 5).

To do a Compare, first multi-select several result sets from any folder. Use Shift-Click and Ctrl-Click to do this.
Second, command the Compare by selecting Compare from the Explorer toolbar or context menu. The Report
panel will then display the result of the comparison:

The Report panel is divided into several vertical section. The first one, Info, holds information that is common
to all result sets and identifies one particular result line (file, function, etc.). The other sections each correspond to a
value you set to be compared in Compare Settings. In each section is a column for each result set and one for the
difference computed between them, if these are numeric values (the normal case).

Panels Reference

http://www.automatedqa.com AQtime by AutomatedQA Corp.

58

Exporting and Importing results
Result sets can be exported to a text file so that they may be included in a formal report or for some other use. This
also allows transferring specific result sets from one machine to another. For more compactness in the latter use, the
export format can be made binary.

Exporting any single result set is available from the context menu as Save To File… and importing as Load
From File….

Graph Panel

The Graph panel displays profiling results from the Report panel in graphical form and offers a built-in print
capability.

On the X axis (horizontal), the graph shows each line from the Report panel. For each line it shows as many
graphical values as you have chosen separate values to graph. "Separate values to graph" are called series. For
instance, the graph might show two series, Percent Time and Time in Seconds. Each profiled function would get
two vertical bars, one for each value.

But note that the panel can show many other forms of graphs besides bar graphs – eleven in all, each in flat or
3D version. This is selected from the Graph context menu (right-click), Properties | Change. Properties in fact
opens the Chart Editor, and many other aspects of the graph layout can be modified from there – colors, titles, etc.
More are available from Options… on the context menu.

Series can be added by dragging columns in from the Report panel or by using Add graph series from the
Graph toolbar. But for more control (esp. to remove series) use the Series sub menu of the context menu. The panel
will automatically reject a series if it is already on the graph. (See Graph Panel Series.)

Refresh on the context menu will update the chart display when the Report panel has been reorganized, for
instance by sorting.

Copy on the context menu lets you copy the chart to the clipboard in any of three formats, bitmap, metafile, or
enhanced metafile image. Once on the clipboard, the chart can be pasted into the appropriate software (e.g. Paint
for a bitmap), and modified or saved to file from there.

Macro Engine Panel

Copyright © 1999-2001 AutomatedQA Corp. support@automatedqa.com

59

To print a chart with complete control, use Preview Graph from the toolbar or context menu. You can print
directly from there. Or, if your print parameters are already correctly set up, you can simply click on Print in
the context menu.

Macro Engine Panel

Macro Engine Plug-In
You have built your application, tested it and found bugs and bottlenecks. You've modified your source, and
retested, repeating the exact tests you did before. You've fixed code again, and now you're going to repeat the
cycle… etc., until you've actually found the solution to the application's problems. This approach to application
testing is a drain on time and energy and also ensures that at some point the the test sequences will vary. Robot
work should be left to robots.

The Macro Engine plug-in for AQtime can record and play back any sequence of test steps (mouse clicks, key
presses, etc). These events are recorded as program instructions in one of three scripting languages, at your option:
DelphiScript, VBScript or JScript (see About Macros). These instructions make up a routine, which is called a
macro. On the next profile run, you can execute the macro rather than repeat all test operations manually.

The Macro plug-in uses object-oriented recording and playback built on AutomatedQA's AQtest technology.
All events are recorded as a sequence of calls to methods or properties of the same objects as AQtest uses. Macros
recorded with the Macro Engine can be run in AQtest, where you may want to use AQtest's specialized facilities to
test them out. On the other hand, most AQtest scripts will not execute as AQtime macros; the Macro Engine online
supports a simple, single-purpose subset of the AQtest scripting facilities.

All recorded macros are stored in the AQtime project file (<projectName>.aqt). They can separately be saved to
.mac files, and loaded back from these.

Macro Engine Panel
The Macro Engine plug-in is installed in AQtime as an additional panel. This panel includes two sections:

Panels Reference

http://www.automatedqa.com AQtime by AutomatedQA Corp.

60

The left section displays a list of all recorded macros for the current test project. It holds two columns:
Description displays the macro name, Created, the creation date and time. You can customize the macro list using
the usual AQtime column-moving options.

The right section, Macro Editor, holds the source code of the macro selected in the list. The Editor includes a
full range of code-editor features; see Editor Options. Remember that all macros must include a Main procedure,
since this is what is called when you run the macro. See About Macros.

To run or record a macro, use the context (right-click) menu or the Macro Engine toolbar. See Macro Recording
and Playback for details.

About Macros
A macro is a series of program instructions written in one of three scripting languages: DelphiScript, VBScript or
JScript. The language for new macros is specified by one of Macro Engine Options.

The DelphiScript support is built into the Macro Engine plug-in. VBScript and JScript are supported by dynamic
link libraries of the same name shipped with Windows or Internet Explorer. To run VBScript and JScript macros,
you must have Internet Explorer 4.0 or higher. Else, you can install the Microsoft scripting components directly.
The latest version of these DLLs (as a part of Windows Script Components) is available at
http://www.microsoft.com/msdownload/vbscript/scripting.asp.

All three supported languages are limited to variables of OleVariant compatible type, and none can use pointers.
Types specified in variable or function declarations are ignored. For detailed information, see

• DelphiScript DelphiScript Description in on-line help

• JScript http://www.microsoft.com/jscript

• VBScript http://www.microsoft.com/vbscript
Program instructions within a macro can be divided into several procedures. When recording starts, the Macro

Engine creates a new procedure called Main and then records to it all events that occur

• in AQtime,

http://www.microsoft.com/msdownload/vbscript/scripting.asp
http://www.microsoft.com/jscript
http://www.microsoft.com/vbscript

Macro Engine Panel

Copyright © 1999-2001 AutomatedQA Corp. support@automatedqa.com

61

• in the profiled application and

• in the system.
Later you can add other procedures manually using Macro Editor, split the recorded code among them, or add

your own code. Procedures can call each other within the same macro. Note that each macro must have its Main
procedure, as this is what is called when you start playback.

All events are recorded as a sequence of calls to methods or properties of certain objects. The objects, methods
and properties all belong to a subset of those in AQtest. Macros recorded with the Macro Engine can be run in
AQtest, where you may want to use AQtest's specialized facilities to test them out. You can copy macros from the
Macro panel to AQtest and run and debug them as scripts there. But most AQtest scripts go beyond the capacities
of the Macro Engine, and will not play back on it. For detailed information on objects, methods and properties used
by the Macro Engine plug-in, see the AQtest Documentation. Some basic principles are mentioned in Window and
Process Recognition.

Macro Recording and Playback
Before recording or playing back a macro, review the settings in the Macro Engine Options dialog and make sure
they are as you expect.

To record a new macro, select Record New Macro from the context (right-click) menu or from the Macro
Engine toolbar. To rewrite an existing macro, select it in the Macro Engine panel and then choose Replace
Existing Macro from the context menu.

Choose Stop from the context menu or from the toolbar to stop recording. Once the recording is stopped,
you can switch to the Macro Editor panel and edit the name and contents of the macro. Note that the Macro Engine
always records instructions into the Main procedure. Later, you can create new procedures and organize source
code among them.

All recorded macros are stored in the .aqt file for the AQtime project. You can also save and load a macro from
an external file (with a .mac extension): Just select Save to File… or Load From File… from the Macro Engine
context menu.

To play a macro, select it in the Macro Engine panel and then choose Run from the context menu. To abort
the playback, press Stop. Note that each macro must have a Main procedure since Macro Engine calls this
procedure when you press the Run button.

It may be more convenient to use keyboard shortcuts for Macro Engine commands instead of context menu
items. For instance, to cancel the recording or playback you can simply press the Stop shortcut, whereas using the
context menu items you'll have to switch to AQtime's Macro panel and select Stop from the context menu. Note
that Macro Engine's shortcuts are used as the system global ones; they work in all applications, whether or not the
Macro plug-in is in record or playback mode. To change shortcuts, use the Macro Engine Options dialog.

Window and Process Recognition
Since the Macro Engine is built on the AQtest technology, it uses the same objects and object hierarchy as AQtest.
Processes, windows, controls, etc. are represented as program objects in macro code. According to the object
hierarchy, processes are "children" of the system, windows are "children" of processes or other windows, etc. To
get the complete idea, see the AQtest documentation. Here is some essential information on how to work with
window and process objects in source code.

The Process(...) and Window(...) function methods return proper program objects for the desired
process or window. The Macro Engine, as well as AQtest, uses several attributes meant to distinguish one window
from others currently open in the system. The window handle is meaningless, since it is changed from one run to
the next. That is why the Macro Engine uses more stable attributes: Class name, caption and index (instance

Panels Reference

http://www.automatedqa.com AQtime by AutomatedQA Corp.

62

number), i.e. Window(ClassName, Caption, Index). Both the class name and the aption can hold
wildcards (* and ?).

Nevertheless, no window attribute is guaranteed to be stable. On the contrary, applications can change window
attributes frequently. For instance, MDI applications often change the parent MDI window caption according to the
active child window. To warn you away from relying on such a caption, Macro Engine automatically records the
string "*" for any caption that includes a hyphen.

In some applications, the window class names can be changed from one execution to the next. Typically, this
applies to MFC windows. For instance, in the class name "Afx:400000:b:10008:6:1027b" the last digits can change
from run to run. To solve the problem, specify wildcards in the window class name. In our example, you might use
"Afx:400000:b:*" instead of the full class name.

The Process(...) function uses two parameters: The name of the executable that launches the process
(extension is excluded) and the process index, that is, Process(ProcessName, ProcessIndex). If the
tested application is run and Macro Engine cannot find it, make sure the process name and index are specified
correctly. Note that unlike the window caption and class name parameters, the process name does not support
wildcards.

Monitor Panel

The Real-Time Monitor is a tool aimed at monitoring real-time resource usage and reporting the results in
different ways: grid records, charts and graphs. The contents of the posted reports are determined by the profiler
used and by the application being profiled. Currently, Real-Time Monitor works with the following profilers:

• ATL Reference Count Profiler

• VCL Class Profiler

• VCL Reference Count Profiler

• Memory and API Resource Check
The Real-Time Monitor is organized as an AQtime visual plug-in (a panel) with a context menu (right-click)

and a toolbar which lets you tune what to display in the panel and how to do that. Here is an example of the Real-
Time Monitor report for the VCL Class profiler:

Monitor Panel

Copyright © 1999-2001 AutomatedQA Corp. support@automatedqa.com

63

The Real-Time Monitor can display result data using three views:

• Counter

• Graph

• Histogram
They can be used simultaneously in any desired combination. Splitters that separate them are movable; thus you

can change the view sizes. To hide or show a view, simply select an appropriate item in the Real Time Monitor
toolbar or the context menu.

Each profiler holds a constant list of values to be calculated for each series. These values are columns in the
Values section of the Counter view. There is no need to start the project in order to obtain this list: You simply
select the necessary profiler. Then you can hide some of these columns or display them again. See the Values dialog
in on-line help. One of the columns, displayed in the Counter view, is used to form the results on the Graph and
Histogram views: You select it from the Values dropdown list of the Real-Time Monitor panel.

A series list is set in a different way. It is modified during the profiling and therefore it is empty before
executing the application (though all series will be visible after you have started the application for the first time).
After this, the Real-Time Monitor saves all information on the used series in the current project. Before starting the
application for the second time, you can specify which series to display. To do this, use the Series dialog. To
choose series for two other views, use the Select Series Series dialog and the results of this selection will be
displayed in the Series field of the Real-Time Monitor panel.

Panels Reference

http://www.automatedqa.com AQtime by AutomatedQA Corp.

64

Counter View
In the Counter view, all the data are displayed as table records called series. In comparison with the other views that
graphically illustrate the results and give their common image, the Counter view is suitable for precise analysis of
the results. When Counter is not alone on the panel, this view occupies the topmost part of it.

The table is divided into two sections. The first section (Series) displays the names of series where you will get
the report (the Name column) as well as the color chosen for the specific series (the Color column). You can
specify which series to be displayed in this section for the current profiler using the Series dialog. Through this
dialog you can also assign colors for these series to distinguish them in the Graph view, although only the colors of
the series, displayed in Graph, will be displayed in the grid of the Counter view.

The second section (Values) holds columns to display numerical values for the chosen series. Each supported
profiler has its own list of columns for this section. Through the Valuesdialog you can assign the columns to be
displayed.

The Refresh Interval | Counter option sets the time interval, after which AQtime updates the Counter view. If
this value is 0, Counter is refreshed immediately after a series value has been modified. See Monitor Options.

Graph View
This view displays series within a chart and visually demonstrates the difference between series values. When
Graph is accompanied with all other views on the panel, this view occupies the lower left part of it.

The Graph view represents the results of a sole value: It is the column selected in the Value dropdown list. This
control holds the names of the columns checked in the Values dialog. The Series field determines the series for
which the results are displayed in the Graph view. It lists the names of the series that are checked in the Select
Series Series dialog. Those can be the series provided by the profiler as well as the sum of all series and the sum of
all visible series.

The Refresh Interval | Graph option sets the time interval, after which AQtime updates the Graph view. See
Monitor Options.

Monitor Panel

Copyright © 1999-2001 AutomatedQA Corp. support@automatedqa.com

65

The Graph view applies definite colors to draw the chosen series. Use the Series dialog to set these colors for the
ordinary series or the Options dialog to set the colors for summarized series (Sum of All Series and Sum of All
Visible Series).

After termination of profiling the Graph view contents can be scaled. Diagrams within Graph can be displayed
in one of several supported styles (lines, points, areas, etc.). You can choose an appropriate style if you select
Graph Style from the context menu:

Area

Point

Pie

Line

Graph

Histogram View
The Histogram view displays series within a histogram during the application functioning. This allows you to
compare certain series by their values at definite moments. Multiple display styles are available when using this
view. When Histogram is accompanied with all other views on the panel, this view occupies the lower right part of
it.

Panels Reference

http://www.automatedqa.com AQtime by AutomatedQA Corp.

66

The Histogram view represents the results of a sole value: It is the column selected in the Value dropdown list.
This control holds the names of the columns checked in the Values dialog. The Series field determines the series
for which the results are displayed in the Histogram view. It lists the names of the series that are checked in the
Select Series Series dialog. Those can be the series provided by the profiler as well as the sum of all series and the
sum of all visible series.

The Refresh Interval | Histogram option sets the time interval, after which AQtime updates the Histogram view.
See Monitor Options.

The Histogram view applies definite colors to draw the chosen series. Use the Series dialog to set these colors
for the ordinary series or the Options dialog to set the colors for summarized series (Sum of All Series and Sum of
All Visible Series).

When executing a project, you can place marks within the histogram to quickly isolate the desired sections of
the graph (simply click within the histogram where you want).

After termination of profiling the Histogram view contents can be scrolled and scaled.

PEReader Panel

The PEReader plug-in is intended for analyzing modules' relationship in the profiled application. This plug-in is
installed as an additional AQtime panel (see Installation Notes). Upon loading a project, PEReader analyses
modules statically linked to the application and displays detailed information about these modules, imported
functions, modules' headers, etc.

PEReader Panel

Copyright © 1999-2001 AutomatedQA Corp. support@automatedqa.com

67

The PEReader panel is divided into several sections -
Modules Hierarchy Displays the hierarchy of modules used by an application.
Function Information Holds tables of imported and exported functions.
PE Information Displays information about headers and sections of the module selected in the

Modules Hierarchy pane.

Contrary to other AQtime analysis means, PEReader does not require the application to be compiled with the
debugger information. It simply analyzes the application code. It helps you to -

• Determine statically linked modules required for the application running.

• Determine defective files.

• Determine what functions each module imports and exports.

• Examine detailed information about functions used by the application (entry points, function addresses in a
module).

• Find correspondence between imported and exported functions quickly.

Panels Reference

http://www.automatedqa.com AQtime by AutomatedQA Corp.

68

• Examine detailed information about modules used by the application (operating system version, module
version, image file type, debug info existence, entry point, image base address, processor type, etc).

• Determine whether a function belongs to a module, etc.
Specified URL cannot be opened. A web browser is not set on your computer properly. To open a URL, launch

your web browser and type the address manually.

Modules Hierarchy Panel
The Modules Hierarchy pane of the PEReader panel displays the hierarchy of all modules statically linked to the
application. It is a convenient instrument to explore correlation between different modules, used by an application.

When AQtime loads a project, PEReader scans all application modules recursively beginning with the main one.
If a module, say it is a dynamic link library, imports some functions from another dll, PEReader analyzes the latter
dll and displays it as a child of the "superior" dll in the Modules Hierarchy pane. The recursion continues until all
used modules are processed. The results of analysis are displayed in the Function Information and PE Information
panes.

Normally, modules use each other. If during the recursion PEReader meets a module that has already been
reviewed, it does not check its child modules. PEReader marks the duplicated modules using the sign and
displays them without "children" in the Modules Hierarchy pane. The sign means that the module has been
analyzed somewhere before. To view child modules for the duplicated one, simply double click it in Modules
Hierarchy or select Find First Occurrence from the context menu.

Besides the "duplication" mark, modules can be displayed with one of the following signs:

Ordinary module.
Absent module. PEReader displays this icon when it can not locate a module used by the
application.To obtain the list of all modules necessary for the application running, call the Statically
Linked Modules dialog (select Show Modules List… from the context menu).
Defective module. PEReader reports that the module is defective if it can not be executed by certain
reasons.

Function Information Panel
The Function Information pane of the PEReader panel displays two lists of functions: The lower one holds
functions exported by the module currently selected in the Modules Hierarchy pane; The upper list holds functions
called by the "parent" module from this "child".

PEReader Panel

Copyright © 1999-2001 AutomatedQA Corp. support@automatedqa.com

69

Function Information includes the following columns -

Ordinal Holds the function ordinal number if the function is imported by its ordinal number.
“N/A” means the function is imported by name.

Hint Hint value of a function. This value is a function index in the array of functions exported
by the dll. The system uses this value for rapid search for a function in a module.

Function Holds the function name if a function is imported by name. “N/A” means that the function
is imported by Ordinal number.
For C++ functions the Function Table displays unmangled names to make the information
readable. Review Mangled Names for more information on mangled function names and mangling
related problems.

Entry
point

Function address in the module. Usually, this column displays “No bound” for imported
functions, i.?. the entry point is unknown until the module is loaded. If the address is
specified, the module has been linked via the BIND program.

You can arrange the Function Information pane in the usual way (see Arranging Columns… in the Index).
To find an exported function that corresponds to an imported one, select the imported function in the upper list

and then choose Highlight Matching Function from the context menu.

Panels Reference

http://www.automatedqa.com AQtime by AutomatedQA Corp.

70

PE Information Panel
This panel displays detailed information about headers and sections of the module (a dll or exe file) selected in the
Modules Hierarchy pane.

Headers

The header of a module consists of three parts (or three headers). They hold detailed information about a module.

DOS Header The header that existed in all DOS executable applications plus the field that
indicates the offset of PE Header.

PE Header Holds information about the processor type, the number of application sections, and
the date of file creation and file attributes.

Optional Header Holds specific information used by the operating system, e.g. the version number of
the required operating system, control sum, image base address, etc.

For more information about the structure and contents of PE Headers, see MSDN Library. Note that you can
access MSDN on Web - http://www.msdn.microsoft.com.

http://www.msdn.microsoft.com

Report Panel

Copyright © 1999-2001 AutomatedQA Corp. support@automatedqa.com

71

Sections

Sections are “segments” of code or data within an executable. In general, a file can include any section with an
arbitrary name and purpose. But some sections, e.g. debug or rsrc, have essential meaning. For detailed information
see MSDN Library. Note that Windows NT limits the number of sections till 96.

For each section, PEReader displays the following information:
- Virtual address of a section in the process address space.
- Relative size of a section body.
- The offset of the section body in a file.
- Section attributes.

Report Panel

By default, the Report and Explorer panels are located on the same tab page, titled Results. The Report panel is the
basic display for profiling results. Specific elements can be selected in Report to define what will be displayed in
turn in other panels: Disassembly, Editor, Graph, Call Graph and Details (see AQtime Panels).

The contents of the Report panel depend on the profiler used to generate the results on display. (These are
normally those of the last run, but they can also be retrieved from previous runs through the Explorer panel.) To get
help on the profiler which generated these results, press Ctrl-F1 or choose Help On Selected Profiler from the
Report context menu.

Depending on the selected profiler, each row in the Report panel gives results for one profiled function, line,
class, interface or file. As you shift from one line to another and check the ensuing details in other panels, your
movements are tracked, so that you can retrace your steps back and forth using the Back and Forward
buttons on the Report toolbar.

For numerical columns, the footer (the last grid row) lists the sum of all values in the column. In other words,
the footer row displays totals for the items displayed above it.

You can arrange the Report panel the same way you can organize other AQtime panels. Besides supporting
these standard adjustments, the Report panel lets you:

• Force all columns to display within the visible width, by selecting Adjust Column Width from the context
menu.

• Change the font color for a column, its text alignment, its format string, etc., by selecting Format
Columns… from the context menu, which will call the Format Columns dialog.

• Alternatively, change text alignment in a column by selecting Alignment from the column header's context
menu. See Column Format.

• Change data display format for a column (Value, Graph Bar and Percent) by selecting Display Format…
from the column header's context menu. See Displaying Results in on-line help.

• Find records (lines shown) by some key value, by using the Find dialog or the Incremental Search
mechanism (see Searching Results).

• Select records to display by some key value. See Filtering Results.

• Apply pre-defined Views to instantly get a combination of filter and display settings.

• Group results into a subtree when they share one or several common key values by one or more Report
columns.The Set Summary Field dialog will let you define how values are calculated for display in the

Panels Reference

http://www.automatedqa.com AQtime by AutomatedQA Corp.

72

group's top (summary) line. The usual sort-on-column feature will work on the summary line to sort entire
groups.

Setup Panel

The Setup panel is your tool for defining what portions of code to profile, and when. See Controlling What To
Profile. The panel consists of three panes. Here is a sample:

Modules pane
Modules is the pane to the left of the panel. It displays a list of all executables (exe, dll, ocx, etc) available for
profiling, in treelike format. Click on a module to view all procedures, classes and units within it. Select View by
Class, View by Unit and View by Path/File from the context (right-click) menu to arrange information within the
list.

Setup Panel

Copyright © 1999-2001 AutomatedQA Corp. support@automatedqa.com

73

To add a module to the project, select Add Module… from the Setup toolbar or context menu. The
executable on which the project was first opened remains the "main" executable. AQtime launches it when it start a
profile run. Other modules will be loaded by this one as it runs (or possibly not loaded).

Alternatively, you can drag executables into the Modules pane from Windows Explorer. If they are dragged
using the left button, they open a new project and become its main executable. If dragged with the right button, a
dialog will pop up asking if you want to open a new project or add the executable as a module to the current
project.

You can quickly locate a function in the Modules pane without opening each module, by using Find
Function… on the context menu to call the Find Function dialog, or simply Find Next.

Areas pane
The Areas pane is on the right side, and at the top. It defines and keeps the list of profiling areas. Areas group code
elements to be profiled (see Defining Areas To Profile). For an element to be profiled in a given run, it must be
checked and its area must be checked also. In this way, Areas do not just define code to profile, they keep
definitions on hand for later use. There are also Excluding Areas, which subtract elements from larger blocks to
profile (e.g. one method from a class).

The pane displays Areas, and each Area can be opened to list its elements. The columns serve to fully specify
the element being included or excluded on that line. For Areas themselves, they're empty – Areas only have the
name you give them. You can arrange the columns through the usual means.

There is one preset Including Area, FULL CHECK, which you cannot change nor remove, and which includes
everything in the application. Otherwise, Areas are like folders holding elements. Including Areas are shown with a
+ on the folder icon, and Excluding Areas with a -.

You have first to add an Area using Add Area… from the Setup toolbar or context menu. The dialog lets
you set the name for the Area, and whether it will be Including (default) or Excluding. You can change both
settings later by using Edit Area… on the context menu. This also has Remove.

Once you have an Area defined you can use the appropriate commands on the context menu to call up the Add
Units, Add Procedures and Add Classes dialogs. Or you can drag in elements from the Modules pane. You can also
drag elements back out to the Modules pane, but using Remove is simpler. A given element may belong to as many
Areas as you wish. If it is checked in an Excluding area, however, this will override all checks in Including areas.

If you check for inclusion some functions, but do not check the functions they call, then the execution time
spend on those calls will be counted as if it belonged to the caller function (see Function Profiling Restriction).
When you need to trace out exactly where the time goes, make sure that the child calls get profiled along with their
callers. Triggers, described below, are an excellent tool for that.

Triggers pane
The triggers pane is to the lower right of the Setup panel. Triggers are organized in a fashion very similar to that of
Areas, but their purpose is different and they apply only to the three function profilers, Function HitCount, Function
Trace and Function Profiler. There are On Triggers and Off Triggers. In an On Trigger, whenever execution enters
a checked element (function, class, unit), profiling is enabled for that thread. When execution leaves the element,
profiling is returned to its former state. Vice-versa for Off Triggers. See Using Triggers.

Note that profiling being enabled does not mean it actually operates. It means it is allowed to operate on the
Areas checked in the Areas pane. The only exception is that a function that is itself an On Trigger always gets
profiled if checked, independent of any Area it may belong to. See Controlling What To Profile. However, you may
simply check FULL CHECK in the Areas pane, and then leave profiling control to Triggers.

Panels Reference

http://www.automatedqa.com AQtime by AutomatedQA Corp.

74

There are two predefined Triggers, Initial Profiling Status For Starting Thread and similarly for New Threads.
They are checked by default. When they are checked, profiling is always enabled unless an Off Trigger is under
execution. When they are unchecked, profiling is always disabled unless an On Trigger is under execution. Leaving
these checked means controlling profiling primarily through Areas (which is always the case of course with all but
the three function profilers). To give primary control to Triggers, uncheck the two predefined ones.

To create a new trigger folder, select Add trigger… from the popup menu. This will call the Add Trigger
dialog, which allows you to specify the trigger name, type (on/off) and some other attributes (see Setting Up
Triggers). Once you have a folder, you add elements to it in the same way you would add them to an Area.

Panels How-To

Adding and Removing Columns in AQtime Panels
 Most AQtime panels do not display all available columns by default. In each panel, the context menu (right-click)
offers a Field Chooser… item, which opens the Column Selection dialog. To add a column, drag it from the
dialog to the panel. To remove a column from the panel, drag it from the panel to the dialog.

You can also remove any column in the Report panel by right-clicking its header and selecting Remove This
Column.

Column Format
There are many things you can change about the columns in the Report, Details and Disassembly panels.

First, in the header, you can drag the column dividers to change widths, and you can drag the column headers
themselves to re-order columns.

Then, still on the header, you can open the context (right-click menu). See Report Panel Context Menus. There
you will find several items unrelated to column format, but also:

• Display Format: This isn't "format" in the same sense as Column Format. Value, percent or graph. See
Displaying Results in the Report and Details Panels.

• Alignment, Auto Width and Remove This Column: Obvious meanings.

• Adjust Column Width (when Auto Width is off): Forces all available columns into the onscreen table. Note
that by default the panels do not start out displaying all available coluns.

• Field Chooser… opens a list of fields (columns) from which you can add to the displayed columns by
dragging out new fields, or remove displayed columns by dragging their headers into the list. See Adding and
Removing Columns to/from AQtime Panels.

• Format Columns… opens the Format Columns Dialog, where you can set alignment, select columns to
display, change their captions, etc.

Displaying Results in the Report, Details and Disassembly Panels
In the Report, Details and Disassembly panels each column holding results can display them in one of three ways,
at your option: by percentage, by value, or as a bar graph. A bar graph is great for visual comparisons.

Display style is set by right-clicking on the header for the column and selecting Display Format from the
context menu. Inapplicable display styles are disabled.

Working With Results

Copyright © 1999-2001 AutomatedQA Corp. support@automatedqa.com

75

Graph Panel Series
 To modify the properties of an existing series on the Graph Panel, select Series | Modify from the context menu
(right-click) or choose Properties…, which will bring up the Chart Properties dialog.

To add a series, select Series | Add Series…, which will bring up the Add Series dialog.
To remove a series, use Series | Delete.
You can also drag any column header from the Report panel to the Graph panel. The panel will identify a string

column as a Label field, and an integer or float column as a Value field. If you simply drag over to Graph chart,
you will replace the existing Label or Value field (however you cannot replace a Value field with itself).

If you Ctrl-drag a Value field (drag with Ctrl key held down), you will add a new column to the chart. You
cannot do this with strings, since the chart cannot have two series of Labels.

Selecting Several Records in a Panel
To select several separate records, hold down the Ctrl key and click each record you want to select. To select a
range of records, click on the first item, hold down the Shift key and then click the last item. Shift-click always
selects down or up from the last clicked item, no matter whether it was clicked with Ctrl, Shift or nothing. It also
undoes all other selections, as does a simple click. By contrast, Ctrl-click adds to existing selections, it does not
void them.

Working With Results

Comparing and Merging Results
 As you can see in the Explorer panel, AQtime keeps a "Last Results" archive of the most recent result sets (five
sets by default). These are labeled with date and time, and you can add your description directly onscreen. While a
result set is still archived, you can choose to copy it to your own archive, Saved Results, where it will remain until

Panels Reference

http://www.automatedqa.com AQtime by AutomatedQA Corp.

76

you delete the set or delete the project from disk. The entire Explorer contents are specific to the current project and
current profiler. See Explorer Panel for details on all these points.

Besides allowing easy reference to past results, this system lets you set up comparisons between result sets or
merge them into a new, combined result set. (With Delphi 5 applications, take care to turn on the Update
procedure names to Delphi 5 option of the Explorer panel. See Explorer Options).

Comparing Results

Suppose you have profiled a sorting procedure and discovered that it performs slowly. You may decide to that the
algorithm must be optimized. You will try something, then profile the sort again. At this point the Compare facility
steps in and lets you focus on the resulting differences in a single comparison report, laid out as a normal result
report would be.

We'll call each stored result set (i.e. each dated line in the Explorer panel) a record. You can multi-select any
number of records in the Explorer panel then choose Compare from the Explorer toolbar or from the context
menu (right-click) and, voilа!, the compative report will appear in the Report panel.

Working With Results

Copyright © 1999-2001 AutomatedQA Corp. support@automatedqa.com

77

The comparison is configurable, of course. Select Compare Settings… from the Explorer context menu and
you will get the Compare Settings dialog:

The actual dialog depends on the current profiler. The checkboxes in the Compare column select the columns
you want to show in your comparison report.

For numeric results, if you have selected only two records to compare, you can select a "Difference Style". If
you have more than two records, the Difference Style is "None", which means that columns from each record will
simply be shown side by side. Other Difference Styles are simply ways to "compact" the columns from the two
records into one by doing a simple arithmetic operation on them to show up the difference. These Styles use
"Record 1" for the first record you selected, "Record 2" for the second.

Explorer Options includes an Always set up Compare params checkbox. If this is checked, then the Compare
Settings dialog will pop up whenever you ask for a Compare.

Merging Results

Merging records means bringing them together into a new record, as if it was another profiler result, except that the
numeric fields are replaced by the sum, average, maximum or minimum of the values in the merged records.

The resulting record goes into the Merged Results section of the Explorer panel. Note that the Explorer shows it
as if it held its source records also, but this is only a way to identify the source. Only the merged result is kept in
Merged Results. Like Current Results, Merged Results must be Saved (from the toolbar or the context menu) to be
kept beyond the auto-archive limit (default five records).

The advantage of merges is that they focus on important statistics for the collection of records selected, such as
average results over several runs. The limitation is that the application must not have changed in ways important for
the profiler results. If function names have changed, for instance, then merging becomes pointless. Likewise, if a
profiled function has been optimized.

Panels Reference

http://www.automatedqa.com AQtime by AutomatedQA Corp.

78

To merge records, multi-select them in the Explorer panel, then choose Merge from the Explorer toolbar or
from the context menu. You may include records from the Merged Results section in a later merge. Merged results
are just like other records, but they are flagged as merged results in Explorer (even if stored in Saved Results) by
the "inclusion" of the date-times for the source records.

The only options about the merge format are which of the four available operations will be used to summarize
merged results on each column. Merge Setting… on the context menu brings up the Merge Settings dialog for this.

If the Auto-merge option of the Explorer panel is on, there is a result set in the folder specified for that option,
into which each new result set is merged.

Exporting Results
Profiling results can be copied to the Clipboard or exported to file from the Report panel in any of the following
formats: Microsoft Excel, tab-delimited text, HTML or XML (viewable in IE 5.0 or later). Column headers are
always included, in their current order on the panel.

You can multi-select the lines you want to export, and choose Save Selection… from the context (right-click)
menu. (See Selecting Several Records in a Panel.) Or you can simply choose Save All.

You can also multi-select lines and choose Add to source file from the context menu to insert the results as
comments, each at the start of the corresponding source code (e.g. function source) in their source files.

Finally, you can save results to a .txt or .bin file. Select the desired result set in the Explorer panel and then
choose Save to File… from its context (right-click) menu. Note that in this case the text file with results has
another format than a file with results exported from the Report panel context menu. Load From File… will
retrieve results saved to text this way.

Filtering Results
 The output of AQtime’s many profilers can be displayed in pre-selected form by defining filters. A filter defines a
condition that must that records (report lines) must meet in order to be displayed in the Report panel.

To create or modify filters, choose Filter on the Report toolbar or context menu. Or click the word
“Filtered” on the left of the Report panel. This brings up the Create Filter Condition dialog:

Working With Results

Copyright © 1999-2001 AutomatedQA Corp. support@automatedqa.com

79

In the dialog:

• Press the Add button to create a new empty filter expression.

• Next, specify the field name, condition and value that will be used by the filter.

• Click the Filter Active check box to activate the filter.

• Press OK to apply the filter to the result table.
Note that by unchecking Filter Active, you can keep a filter expression available, while not using it currently.

Grouping Results
Grouping results means getting all results (records) that share a single value for one field (e.g. Class), to show on a
single line in the Report panel. The column you choose to group results on becomes a synopsis of the entire result
set (e.g. results grouped by class), shown in tree fashion, and the individual records are available by opening up the
appropriate branch. This vastly simplifies onscreen navigation of the Report panel when there are several score or
more records to show.

This is one reason all profilers include fields (e.g. Source file, Class name, etc.) that help to locate a profiled
function in source code. For instance, when you group results on the Source file column, each grouped tree node
corresponds to a separate source file. Try it!

You can apply grouping simply by choosing Group by this field from the context (right-click) menu for the
column header. But for better control, and especially to undo grouping, you should choose Show Group Panel
from the Report toolbar or from the context menu anywhere in the panel. This opens the Group Panel:

Panels Reference

http://www.automatedqa.com AQtime by AutomatedQA Corp.

80

You add columns by dragging their headers to the grouping area (you can group on more than one column), and
you remove them by dragging them out of it.

Inserting Profiling Results into Source Code
You can insert profiling results into source code. AQtime inserts profiling results as comments into source files.
You can refer to these notes when you are fixing problems in your application. AQtime inserts profling results for
procedures, selected in the Report panel. The inserted comments depend on a profiler type. For instance, if you
have profiled your application with Function Coverage, AQtime will insert the following text:

// Comment was generated by AQtime Function Coverage at 9:46:52 AM 6/30/00
// Hit Count : 1

To insert profiling results into source code:
1. Select desired procedures in the Report panel. You can use SHIFT and CTRL keys to select several procedures.
2. Select Add Result to Source File from the Report popup menu.

You can switch to the Editor panel to verify that AQtime has inserted results into source code.

Printing Test Results from AQtime
AQtime allows you to print profiling results displayed in the Report panel:

Working With Results

Copyright © 1999-2001 AutomatedQA Corp. support@automatedqa.com

81

1. You can export profiling results into an external file (XLS, XML, TXT or HTML) and print them via external
applications, e.g. Microsoft Excel or Microsoft Internet Explorer.

2. You can print profiling results directly from AQtime. To start printing, select the Print button from the Report
popup menu. AQtime will print a report using a predefined template.
You can customize report properties before printing. AQtime contains the Print Preview form specially

designed for this purpose. The Print Preview form allows you to change color and font settings before printing,
change printer properties, paper size, specify background images, etc. To activate this form, select Print Preview…
from the Report popup menu. After you have made all necessary changes, you can print the report from the Print
Preview form.

Searching Results
AQtime offers two means of searching through the records in a panel.

First, you can click on a column header and begin to type the word to search for. Incrementally, the highlight
will move to the corresponding record as you add letters. This is case-insensitive.

Second, in the Report panel, choosing Find from the toolbar or context (right-click) menu will bring up the
Find dialog, where you can specify search parameters, and search either any one column or the entire report:

Sorting Results
In any panel, on any column where sorting makes sense, you can sort records on that column by clicking the
header, once for sorting in one direction, once more to switch directions. The fact that records are sorted on that
column, as well as the sort direction, is shown by an arrowhead next to the column caption.

In the Report panel you can sort on several columns in succession. Hold down the Shift key. The first column
you click will be the first sort key, the second will be the second key, etc. Re-click on any column without Shift,
and it becomes the single sort key again.

Panels Reference

http://www.automatedqa.com AQtime by AutomatedQA Corp.

82

In the Report panel, the context (right-click) menu for the caption bar offers Sort Ascending and Sort
Descending. This is another way of doing what a simple click or two would do.

Views
A View combines a column layout and filters in the Report panel and a Graph panel layout, for one profiler. To
implement a view simply select it from the Views dropdown list on the Standard toolbar. There are several
predefined views for each profiler type. For instance, when using the VCL Class Profiler, you can choose the
Leaked Classes Only view to obtain a list of objects left in memory after program termination. You can also add
your own views. See Views Implementation.

Panel Options

To customize internal and installed panels (or plug-ins) -

• Select Options | Panel Options… from AQtome's main menu. Then, choose the plug-in you wish to
customize in the appeared Panel Options dialog.

• Or select Options… from the panel's context menu.
All available panel options are listed in the Inspector control. Each panel includes unique customization options.

If an option includes multiple criteria, you can expand or collapse it by pressing the plus (minus) symbol to the left
of the appropriate item. Some options can contain a list of strings. Use the Add and Remove buttons to edit these
options.

Press OK to apply any changes you have made within the Options dialog.

Call Graph Panel Options
• Number of parent levels – Sets the depth of parent calls that will be displayed for each function. 1 means

direct callers only, 2, direct callers and the functions that called them, and so forth.

• Number of child levels – Sets the depth of child calls that will be displayed for each function. 1 means direct
callees only, 2, direct callees and the functions they call in turn, and so forth.

• Show pointing-hand cursor – Sets whether the mouse cursor will change to a pointing hand over areas
(lines and rectangles) that can be clicked on to switch to new details.

• Highlight – When the mouse points a link between rectangles, these settings define how the linked
rectangles are highlighted to make it clearer that they are the ones linked.

Panel Options

Copyright © 1999-2001 AutomatedQA Corp. support@automatedqa.com

83

- Active – Sets whether any highlighting is done.
- Parent function color – Sets the highlight color for the parent-function rectangle.
- Child function color – Sets the highlight color for the child-function rectangle.

• •••• Function rectange background
- Header part – Sets background color for the upper part of function rectangles.
- Details part – Sets background color for lower part of function rectangles.

Details Panel Options
• Grid settings

- Show summary – Sets whether a footer row will be added to show totals for Size and MicroOps.
- Flat grid – Sets whether the header shows as flat (on) or as 3D (off). The difference is small.
- Show grid lines – Sets whether grid lines are displayed between columns and between rows.
- Mark selected lines – Sets whether a narrow gutter is added on the left margin, in order to display a

marker on the currently selected lines.
- Background color – Sets the background color for the cells.
- Font color – Sets the font color for the cell text.

• Chart settings
- Chart style – Selects between pie and bar charts.

Disassembly Panel Options
• Display source code – If this is enabled, code will be displayed by source line, and clicking on a line will

show the asm (disassembly) instructions for it. Alternatively, if Auto expand is enabled the disassembly will
be always shown below the source. In either case, displaying by source line means that instructions will not
always be listed by consecutive address, for instance in the case of loops. If Display source code is disabled,
then instructions are displayed directly, in the same order as in memory.

• Interpret addresses – Sets whether destination names for calls or jumps will be displayed in the Target
Procedure column, rather than addresses. The time cost is generally not perceptible.

• Show instruction note as hint – Sets whether a note for the instruction (when one is available) will be
shown in a hint window. If the option is disabled, there is no hint window. See next option.

• Show instruction note as lines – Sets whether one or more lines will be reserved above each instruction to
show the note for it when available. If the option is enabled, each line is preceded by a preview row, whether
or not a note is present. The height of the preview row is specified by Number of note lines. An alternative
way to show notes, not for all lines but for the currently selected line, is Show instruction note as hint.

• Number of note lines – If Show note as line is enabled, this sets the number of blank lines reserved for the
note, above each instruction. The valid range is between 0 and 10.

• Auto expand – This option only applies when Display source code is enabled. See that option for details.

• Upper case – Sets whether asm instructions will be shown in upper case, rather than lower.

• Grid settings
- Show summary – Sets whether a footer row will be added to show totals for the Size and mOps

columns. Size is in bytes, mOps means micro-operations.

Panels Reference

http://www.automatedqa.com AQtime by AutomatedQA Corp.

84

- Show source line summary – Sets whether an extra line will be added to the disassembly for each
source line (when displayed), in order to show Size and mOps totals for the source line.

- Flat grid – Sets whether the header shows as flat (on) or as 3D (off). The difference is small.
- Show grid lines – Sets whether grid lines are displayed between columns and between rows.
- Mark selected lines – Sets whether a narrow gutter is added on the left margin, in order to display a

marker for the currently selected lines.
- Background color – Sets the background color for the table.
- Font color – Sets the font color for the table.
- Font – Settings for font size (4 to 24 points), for italic and for bold.

Editor Panel Options
• Gutter size in pixels – Sets the width of the area to the left of the text in the Editor. A variety of information

is displayed there, e.g. the main profiling result for each function. Valid values are 0 - 200.

• Tab size in spaces – Number of spaces between the tab columns. When not in ReadOnly mode, pressing Tab
will insert spaces up to the next column. 0 to 20.

• Gutter font -- Font color and size (4 to 24 points) for data displayed in the gutter.

• File extensions for highlighting – The Editor provides different syntax highlighting for different languages,
of course. It takes the highlight settings from the Registry keys for the development tool which is assigned to
the extension of the current file.

File extensions for highlighting holds one list of file extensions for each development tool logged into the
Registry for the machine. The extensions in each list are those for which the Editor will use that tool's syntax
highlight settings. You can change them at will.

It is possible for an extension to figure in the list for more than one tool. This is especially the case for C++
extensions. In case of conflict between two lists, the precedence order runs from MSVC (highest), through VB,
Delphi, BCB and Java, to .NET (lowest). In other words, if for instance .cpp is in the list for both MS VC++ and
Borland C++Builder, the MSVC Registry settings will be used.

For extensions not present in any list, the Delphi settings are used if present in the Registry, else whichever
available settings have highest precedence.

Note: The Registry syntax highlight settings set both font appearance and font language. If for instance you
have set VC++ for Scandinavian fonts then, in the Editor, the files you associate with C++ will use the VC++
highlight and Scandinavian high-ANSI characters.

Event View Panel Options
• Exceptions -- Settings for the display of exception events. None (except Active) has any effect unless Active

is enabled.
- Active – Enables exception logging. When enabled, exceptions are shown in Event View, as set by the

sub-options below, and their time is counted in the function where they occur. Else, exceptions are
neither logged as events nor counted as part of execution time.

- Max consecutive exceptions – Number of exception events, uninterrupted by any other event, after
which exception logging will be disabled until the next non-exception event. This saves profiling time
during exception loops.

- Show call stack – Sets whether, on each exception, the call stack status will be recorded for later
display in the Event View panel. This recording will slow down profiling if there are many exceptions.

Panel Options

Copyright © 1999-2001 AutomatedQA Corp. support@automatedqa.com

85

- Find call stack from frames – This is not an "option", but an input field that specifies to AQtime
whether the profiled application is compiled with stack frames for all functions. If this is the case,
AQtime will use the frames to trace the stack when exceptions occur. Else, it will use its own algorithm
for stack tracing. This may produce erroneous entries in the Call Stack pane of the Details panel.

- Hide IsBadPtr exceptions – If this is enabled, exceptions raised by IsBadPtr, IsBadWritePtr,
IsBadCodePtr or IsBadStringPtr will not be logged to Event View.

- Include no-debug in stack – The call stack may well include functions for which there is no debug
info, typically from pre-compiled libraries. If this option is enabled, the call stack shown for exception
events will include these functions. Else, they will be suppressed from the call stack display.

• Clear on application start – Sets whether Event View will begin empty each time the profiled application is
launched, that is, on each profile run. Else, it will keep events from previous runs.

• Time from application start – If enabled, times shown in the Time column are elapsed times from
application start. Else, they are system time.

• Auto expand – Sets whether Event View nodes are to be shown expanded by default.

Explorer Panel Options
• Number of recent results to keep – Sets the number of entries in the Recent Results list. The default is five.

• Always set up Compare params – Sets whether to show the Compare Settings dialog every time you
compare results. Disabled by default.

• Background color – Sets the background colorfor the Explorer panel.

• Font color – Sets the font color for the Explorer panel.

• Show results for all profilers – When this is disabled – the default state - the Explorer panel only includes
results for the currently selected profiler. When this is enabled, each profiler is shown as a main branch in the
panel, with its results in tree view under that branch.

• Update procedure names to Delphi 5 – Applies only for compare or merge. Sets whether to update Borland
VCL names to the versions used in Delphi 5. The option should be disabled (the default) for all compilers
except Delphi 5. The latter uses a different format for function names in its debug info, and in that case the
option should be enabled to ensure correct functioning during Compare or Merge.

• Auto-merge – Auto-merge is a feature where a special, separate folder accumulates the same results as are
generated in the main panel, but with each new result set merged with the previous one. In other words, the
first result set in the auto-merge folder is the same one as in the main panel, but the second is the main
panel's second result set merged with the first, the third is the main panel's third result set merged with the
two preceding ones, etc.
- Active – Enables or disables the Auto-merge feature. Disabled by default.
- Folder name – Sets the name for the special auto-merge folder, when the feature is enabled.

Graph Panel Options
The Graph panel offers a rich choice of options which complement the Chart Properties (available from Properties
on the Graph context menu).

• Allow zoom – If this is checked, it is possible to outline an area of the graph with the mouse (drag top left to
bottom right) and get it to fill the panel on release. To revert to the previous view, begin dragging inside the
graph, and stop higher and outside it.

• Animated zoom – Sets whether the zoom action (if allowed) is animated.

Panels Reference

http://www.automatedqa.com AQtime by AutomatedQA Corp.

86

• Show axes – Sets whether horizontal and vertical axes will be shown on charts.

• Background color – Sets background color for the charts. See Gradient.

• Gradient – Alternative background color setting, using a gradient.
- Active – Sets whether the gradient settings (below) will be used instead of the Backgound color setting.

If enabled, background color will smoothly vary from bottom to top.
- Bottom color – Sets the background color at the bottom of the chart.
- Top Color – Sets the background color at the top of the chart.

• Monochrome – Sets whether charts will use only black, white and dithers (as in black and white printing)
instead of color.

• 3D view – Sets whether bars will be shown as 3D solids, rather than flat.

Macro Engine Options
• Record AQtime events Sets whether the Macro Engine tracks mouse clicks and keypresses that occur in

AQtime. Default: on.

• Record application eventsSets whether the Macro Engine tracks mouse clicks and keypresses that occur
within the profiled application. By default, this option is on.

• Record all events Sets whether the Macro Engine tracks tracks mouse clicks and keypresses that occur
anywhere onscreen. This feature may be useful when the profiled application interacts with external
applications.

• Auto start application If this option is checked, the Macro Engine automatically launches the profiled
application when you start macro recording, and automatically stops recording when the application is
terminated.

• Delay between events (ms) Time interval, in milliseconds, inserted between each instruction on
playback.

• Show indicator Sets whether an indicator will show onscreen when recording or playing a macro.
Default: on.

• Language for new macrosScripting language in which new macros will be recorded (DelphiScript,
VBScript or JScript).

• Record shortcut Keyboard shortcut to start recording.

• Play shortcut Keyboard shortcut to start playback.

• Stop shortcut Keyboard shortcut to stop recording or playback.

• Editor Calls the Macro Editor Options dialog.
Note that Macro Engine shortcuts are system-global. They work in all applications, and may override

application shortcuts. If, for instance, some application uses Shift-F12 to open a file, and this is also the Record
shortcut. Pressing Shift-F12 within that application will not call the Open File dialog, but will start recording an
AQtime macro.

Monitor Panel Options
• Refresh Intervals (ms) The refresh interval (in milliseconds) used for the Counter, Histpgram and Graph

views.

Panel Options

Copyright © 1999-2001 AutomatedQA Corp. support@automatedqa.com

87

- Counter Valid range is between 0 and 100,000. If its value is 0, the Counter view is refreshes each
time the examined parameters are changed.

- Graph Valid range is between 1 and 100,000.
- Histogram Valid range is between 1 and 100,000.

• Histogram Colors for the Histogram view.
- Background Color Color of the view's background.
- Font Color Text color within the view.
- Mark Color Color used for marks.
- Line Width The width of lines within the view. By default, it is 2.

• Common Series Color
- Sum of All Series Color used to draw the sum of all the series.
- Sum of All Visible Series Color used to draw the sum of the series checked in the Series dialog.

Color settings can be changed through the standard Color dialog. To call it, press the ellipsis button on the right
of the desired option.

PEReader Options
The PEReader plug-in includes three options for optimization. The first one, Show paths, sets whether the Modules
Hierarchy pane displays imported libraries with paths. The other two options, Background color and Font color,
specify accordingly the background and font colors in the PEReader panel.

Report Panel Options
• Show summary – Sets whether a footer row will be added to show column totals.

• Show group summary – On the Report context menu, there is a Show Group Panel option that will allow
grouping results on a column. When this is done, the Set Summary Field option, also on the context menu,
allows row summaries to be displayed for each group node. If results are grouped, but there is no row
summary, then Show group summary enables an alternative way of displaying group summaries – a row is
added below each group to show column summaries for the group.

• Single-click details – Sets whether a single click on a line, rather than a double-click (the default), will
update Details and other panel with data for the element on that line (usually a function). See AQtime Panels)
by a single click in the Report panel.

• Flat grid – Sets whether the Report grid shows as flat (on) or beveled (off)..

• Show grid lines – Sets whether grid lines are displayed between columns and between rows.

• Mark selected lines – Sets whether a narrow column is added to the left of the table, in order to display a
marker for the currently selected lines.

• Background color – Sets the background color for the table.

• Font color – Sets the font color for the table.

Setup Panel Options
• Activate after loading – Sets whether AQtime will switch to the Setup panel after reading the debug info for

the application, that is, after loading a project. Enabled by default.

Panels Reference

http://www.automatedqa.com AQtime by AutomatedQA Corp.

88

• Auto-select new elements – Sets whether new Areas, new Triggers and new elements added to Areas or
Triggers, will be checked on being added (Auto-select on) or unchecked (Auto-select off).

• Show methods only under class – If this option is enabled, the Modules pane (i.e. left-hand treeview) will
only show methods as sub-elements of their class. Else it will also show them as elements of their unit. See
Setup panel.

Static Analysis

Copyright © 1999-2001 AutomatedQA Corp. support@automatedqa.com

89

Profilers Reference

Static Analysis

The Static Analysis profiler does not launch the tested application, but analyses the debug data included in the
executable to find such information as:

- the size of routines in bytes,
- their length in source code lines,

- the routine addresses in memory,
- the binary code generated for the routine, etc.

When you press the Run button for Static Analysis, the application does not execute; the profiler simply
checks the entire executable(s). Area and Trigger settings are ignored. Some questions that can be answered by this
speedy analysis are:

• What code is used by an application? If the application includes a massive module only to use one or two
functions from it, you might choose to extract them from the module, or to re-implement them so as to save on
application size and dependencies.

• What routine is located by a certain address? For instance, if the application raises an exception, you can launch
Static Analysis and determine from the exception address reported what routine caused it.

• What binary code was produced by the compiler for a routine? This can tell you for instance if array or string
parameters are being passed by copying the data to the stack, or only a pointer.
Once Static Analysis is done, each row in the Report panel corresponds to a routine in your code:

Profilers Reference

http://www.automatedqa.com AQtime by AutomatedQA Corp.

90

The columns hold the following information:
Class Name If the routine is a method, name of the class it belongs to.
Length Size in bytes of the compiled code for the routine.
Line Count Routine length in source code lines. Note that this is according to debug info

and may not fit the actual source file, as the compiler uses its own rule for what
is a source line.

Module Name Name of the executable module (exe, dll, etc.) holding the routine.
Procedure Address Routine address in memory.
Procedure Name Full name of the routine, including class name.
Source File Name of the source file for the routine.
Source Line Source file line number where the routine’s implementation begins.
Unit Address Address of the compiled linkage unit in memory.
Unit Length Unit size in memory, in bytes.

Coverage Profilers

Copyright © 1999-2001 AutomatedQA Corp. support@automatedqa.com

91

Unit Name Name of the compiled linkage unit.
To explore the binary code of a routine, double click its line in the Report panel, and then switch to the

Disassembly panel.
To explore the source code of a routine, double click its line in the Report panel and switch to the Editor panel.

The source can only be displayed if the source file is on the Search Path. See also AQtime Panels.

Coverage Profilers

There are three Coverage profilers. What parts they profile during execution is determined by the current Area and
Trigger settings, as usual. The profilers are:

• Function Coverage – Determines whether each profiled function was executed during the run. This profiler is
much faster than the two below.

• Line Coverage (Grouped by function) – Determines whether each profiled source code line was executed
during the run. The line results are grouped by their source function in the Report panel, one report line per
function.

• Line Coverage (Grouped by File) – This does the same as Line Coverage, but grouping by source file (one file
per line) rather than by function. This is more compact and helps get an overall view. Also, this profiler is faster
than Line Coverage (by function), since it does not gather function-specific information. If you need to track all
lines covered or not covered, begin by using this profiler on the FULL CHECK area. This will let you focus on
the the problem files first, and then you can narrow the analysis to these files and use Line Coverage (by
function) with them to drill down further.
Coverage profilers allow you to keep track of untested code as testing progresses over time. They also let you

find unnecessary code that you may remove, when the function or line remains unexecuted under all possible
conditions.

Since Coverage profiling will tend to be applied to large areas of your application, and since, especially, the
Line Coverage profiler are inherently CPU-intensive, there is a special Warning level option for these profilers that
will warn you when you have elected to profile more than a preset number of functions or lines in a single run. See
Coverage Profiler Options. Note also that Line profilers should not be used with applications that use hooks. See
Profiling Applications That Use Hooks in on-line help.

Like all profilers, the Coverage profilers display their results in the Report panel, one line per function or per
source file. Information is also available separately for each thread in a multithreaded application. To view
coverage results for one thread, use either the Explorer panel or the Threads dropdown list on the Standard toolbar.
(See Multithreaded Application Profiling).

As usual, double-clicking on a line in the Report panel will move the contents of the Editor and Disassembly
panels to that line. Switching to the Editor, you will find that the functions or lines executed are marked by green
dots in the gutter, while the non-executed ones have red dots. (See AQtime Panels).

Note that Editor can display incorrect profiling-related information for some C++ applications that use several
functions based on the same template (see Template Functions Restriction in on-line help). In this case, refer to the
Report panel to get correct results.

The Report format for each of the three Coverage profilers is explained separately in the subsequent topics.

Function Coverage Results
Here is an example of the results from a Function Coverage profile run:

Profilers Reference

http://www.automatedqa.com AQtime by AutomatedQA Corp.

92

Notice that in the Editor the red dot in the gutter to the left of the MessageBox source line shows that this
function was not executed.

The Report panel displays the following columns:

Class Name If the function is a method, name of the class it belongs to.
Hit Count 1 if the function was executed, else 0. This field is hidden by default.
Mark Green dot if the function was executed, red dot if not.
Procedure Address Function address in memory.

Procedure Name Full name of the function, including class name.
Source File Name of the source file for the function.
Source Line Source file line number where the function’s implementation begins.
Unit Name Name of the linkage unit holding the function.
Module Name Name of the executable module (exe, dll, etc.) holding the function.

Coverage Profilers

Copyright © 1999-2001 AutomatedQA Corp. support@automatedqa.com

93

Affected by Trigger Indicates whether Triggers turned off the profiling, so that some calls may not
have been counted.

The Mark column helps you quickly see which procedures were executed. The Class Name, Unit Name,
Source File and Source Line columns help to locate the function in source code. You can sort the results by
clicking on any column header.

Line Coverage (Grouped by Function) Results
Here is an example of the results from a Line Coverage (by function) profile run:

The Report panel displays one function per line, using the following columns:

Source File Name of the source file for the function.
Class Name If the function is a method, name of the class it belongs to.

Profilers Reference

http://www.automatedqa.com AQtime by AutomatedQA Corp.

94

Procedure Name Full name of the function, including class name.
Lines Covered Number lines in the function that were executed at least once.
Lines Uncovered Number lines in the function that were never executed during the run.
Total Lines Number of source lines for the function, according to debug information.
% Covered Percentage of total lines that were executed at least once.
Procedure Address Function address in memory.
Unit Name Name of the linkage unit holding the function.
Source Line Source file line number where the function’s implementation begins.

Use the Lines Covered, Lines Uncovered, Total Lines and %Covered columns to identify untested code. For
instance, if the function includes a large number of lines, of which only a small percentage were executed during a
seemingly "complete" test for the function, you might examine the function's algorithm.

To see what functions had the most unexecuted lines, select Procedures covered less than 50% from the View
dropdown list on the Standard toolbar. The Covered and Uncovered views will display only functions not entirely
skipped, or only those entirely skipped – a result you normally get directly from the Function Coverage profiler,
which is faster than Line Coverage.

Note that AQtime gets line information as it is specified in the debugger information. Sometimes, this
information differs from what appears in your source code. For instance, the number of source lines reported may
not coincide with the one you expect.

Line Coverage (Grouped by File) Results
Here is an example of the results from a Line Coverage (grouped by File) profile run:

Coverage Profilers

Copyright © 1999-2001 AutomatedQA Corp. support@automatedqa.com

95

The Report panel displays one line for each source file, using the following columns:

Source File File name.
Lines UnCovered Number of unexecuted lines in the file.
Lines Covered Number of executed lines in the file.
% Covered Percentage of lines executed in the file.
Total Selected Lines Number of lines selected for profiling. Should be Lines Uncovered plus Lines

Covered.
As always, this information is dependent on debug info attached to the executable. With this profiler especially,

you should be on the lookout for unexpected discrepancies. Some compilers, for instance, such as Borland Delphi,
will skip functions that are never called (this is named Smart Linking). Thus, the debug information will log fewer
functions and fewer lines than there are in the source file.

Profilers Reference

http://www.automatedqa.com AQtime by AutomatedQA Corp.

96

Hit Count Profilers

The HitCount profilers sort out the most frequently used portions of your code, or the least frequently used, by
counting how many times each function or line was executed during the profile run (that is, its hit count). There are
many uses for this information. For instance, the most frequently used functions are the ones where a change in
time or resource efficiency will have the most effect on the application. Even simpler, unexpectedly frequent or
infrequent hits indicate that the code is not doing quite what you designed it to do.

There are two HitCount profilers, Function HitCount and Line HitCount. Aside from the obvious difference
(the first counts hits on functions, the second on single source code lines), there are some similarities between the
two –

• Both profile only selected Areas (see Defining Areas to Profile).

• Both collect separate results for each thread in a multithreaded application (see Multithreaded Applications
Profiling).

However, the two profilers are implemented rather differently --

• Function HitCount profiler is linked to functions, therefore it is controlled by Triggers (see Using Triggers).

• Function HitCount is light and rapid. Hit count is one of the statistics collected by the Function Profiler, but you
will find that Function HitCount works faster and provides results that are simpler to analyze. Normally, before
digging in, you need a general map of your application's functioning, and this is what Function HitCount will
provide. Once you've narrowed down the questionable areas with these results, you can use the Function
Profiler to find more details about them.

• Line HitCount inserts a debug breakpoint for every source line in its profiling Areas, and these breakpoints
remain for the duration of the run, so it will tend to slow down the application being profiled. It is in your
interest to reduce the Areas selected for profiling, in terms of total line count, and to use the Max Hit Count
option, which is something like a "safety valve". If it is set, the profiler will stop counting hits on any line once
the Max Hit Count has been reached for it. In the case of the Line HitCount profiler, this can remove
bottlenecks in the profiling process itself. See Line HitCount Options. Note also that Line profilers should not
be used with applications that use hooks. See Profiling Applications That Use Hooks in on-line help.
Despite their differences, the two profilers provide their results in similar formats. Here is an example of the

output for Function HitCount --

Hit Count Profilers

Copyright © 1999-2001 AutomatedQA Corp. support@automatedqa.com

97

The Report panel displays one function per line, using the following columns:

Class Name If the function is a method, name of the class it belongs to.
HitCount Number of times the function was called.
Procedure Address Function address in memory.
Procedure Name Full name of the function, including class name.

Source File Name of the source file for the function.
Source Line Source file line number where the function’s implementation begins.
Unit Name Name of the linkage unit holding the function.
Module Name Name of the executable module (exe, dll, etc.) holding the function.
Affected By Trigger Indicates whether Triggers turned off the profiling, so that some calls may not

have been counted.
Max Recursion Depth Maximum recursion depth (max number of coexisting calls within one thread)

reached during the run for this function. This value is calculated only if the

Profilers Reference

http://www.automatedqa.com AQtime by AutomatedQA Corp.

98

option Track recursion depth is set.

And here is an example of the output for Line HitCount --

The Report panel displays one source line per line, using the same columns as for Function HitCount, above,
except that Module Name and Affected by Trigger are absent, and Source Line, the line number within Source
File, is added. "Procedure" is the function to which the line belongs.

You can sort on the HitCount column, or filter the results according to that value, in order to point out the most
frequently used functions or lines. In fact, Function HitCount provides a predefined view, Top 10 Procedures,
specially for this. Line HitCount provides a similar view called Top 20. You can select these from the Views
dropdown list on the Standard toolbar. (See Views Implementation.)

Double-clicking on any line will update other panels to the selected function or source line – Editor,
Disassembly and, in the case of Function HitCount, the quite useful Details panel (about which, more below). You
can then shift to these panels for more detail (see AQtime Panels). In the case of the Editor panel you will find the
hit count displayed in the gutter, at the start of each profiled function in the case of Function HitCount, and at the

Hit Count Profilers

Copyright © 1999-2001 AutomatedQA Corp. support@automatedqa.com

99

left of each profiled line in the case of Line HitCount. For the latter profiler, this is the most convenient way of
check hit counts.

Note that the gutter can display incorrect information for some C++ programs that use several functions based
on the same template (see Template Functions Restriction in on-line help). The correct profiling results are
nonetheless displayed in the Report panel.

If the Call relationship tracking option is on, Function HitCount uses the Details and Call Graph panels to
display the call relationships between the current function and those that call it ("parents"), and between it and those
it calls ("children'). Details holds the same columns as the Report panel (see Function HitCount Profiler - Details).
Here is a sample:

Double-clicking on a line in Details (a rectangle in Call Graph) will update the other panels to the function
displayed on that line (rectangle). Switching from panel to panel in this way, in order to get the marrow out of the
Function HitCount Profiler results, is made much easier by the "browser" buttons, Back and Forward on
the Report toolbar.

Some routines listed in Details may have zeros in the HitCount column. It means that the routine was called
recursively during profiling. See Profiling Recursive Functions.

Profilers Reference

http://www.automatedqa.com AQtime by AutomatedQA Corp.

100

Function Profiler

The Function Profiler provides much information about calls to the profiled functions during the profile run (see
the list below). In particular:

• It times the execution of each call (which is what you expect of classic profiling).

• It tracks the hierarchy of function calls, that is, which functions ("parents") call which ("children"), i.e.
which functions (parents) called other functions (children). To display this information in a convenient,
graphical, browsable format, it uses the Call Graph panel, which is used by no other profiler.

As usual, the Function Profiler keeps separate track of each application thread (see Multithreaded Applications
Profiling), and it supports Triggers (see Using Triggers) as well as Areas.

However, the profiler cannot track functions under five bytes in size (see Small Function Profiling in on-line
help). And, because of the amount of information it gathers on each call, it can be slower than other profilers. For
instance, if hit counts are your immediate interest, the Function HitCount Profiler will provide results quicker and
in a simpler format.

Here is an example of the output of the Function Profiler:

Function Profiler

Copyright © 1999-2001 AutomatedQA Corp. support@automatedqa.com

101

The Report panel displays one function per line, using the following columns:

Procedure Name Full name of the function, including class name.
Class Name If the function is a method, name of the class it belongs to.
Source File Name of the source file for the function.
Unit Name Name of the linkage unit holding the function.
Length Size in bytes of the compiled code for the function.
Line Count Function length in source code lines. Note that this is according to debug

info and may not fit the actual source file, as the compiler uses its own rule
for what is a source line.

Procedure Address Function address in memory.
Source Line Source file line number where the function’s implementation begins.
HitCount Number of times the function was called.
Exception (#) Number of times the function was entered but not successfully exited. This

is usually a count of exception exits, but it will also tally cases where the
function was exited through a jump to some other function, instead of
through the ret instruction (see Function Instrumenting Restriction in on-
line help).

Time with Children Total time spent on calls to this function, in seconds, including its calls to
child functions. The sum for all profiled functions appears in the footer of
this column. It will normally be an important multiple of actual profile-run
duration, as child calls are counted several times.

Time (s) Total time spent executing the function's own code, in seconds, excluding
child calls. The sum for all profiled functions appears in the footer of this
column.

Time % Total time spent executing the function's own code, as a percentage of the
time spent executing all profiled functions.

% with Children Time with Children value as a percentage of the sum of Time with Children
for all profiled functions.

Average time (ms) Average time, in milliseconds, spent executing the funtion's own code on
one call. This is simply Time (s) / HitCount.

Average with
Children (ms)

Average time, in milliseconds, spent on each call to the function, child calls
included. This is simply Time with Children / HitCount.

Max time (ms) and
Min time (ms)

Maximum and minimum time, in milliseconds, spent executing the
function's own code on a call. Exceptional values point out perhaps
unexpected special conditions.

Affected by Trigger Indicates whether Triggers turned off the profiling, so that some calls may
not have been counted.

Max Recursion Depth Maximum recursion depth (max number of coexisting calls within one
thread) reached during the run for this function. This value is calculated
only if the Track recursion depth option is set.

Profilers Reference

http://www.automatedqa.com AQtime by AutomatedQA Corp.

102

Note that calls to child functions are only timed (and deducted from the Time (s) total) if the child functions are
part of the profiling Areas. Else, they count in the execution time of the parent function ("own code"). You may
mis-identify bottlenecks unless you make sure that child functions are profiled along with their parents (callers).
Triggers may help you do this without profiling everything during the run. See also Function Profiling Restriction
in on-line help.

The Function Profiler has a Show non-hit functions option which is off by default (see Function Profiler
Options). This means profiled functions for which the hit count was zero are not displayed. They will be displayed
if the option is on.

The usefulness of the % with children column is that it tells which are the expensive calls. A function may cost
time due to its own code, or to the child calls it makes – but in any case it costs time. Often, an optimization will
consist simply in making more efficient child calls – for instance, in moving a child call out of a loop. % Time
reports the cost of the function's own code. % Time with Children reports the actual cost of running the function,
no matter whether the cost is incurred in the function's code or in the calls it makes.

The % with children relative to real time Function profiler option does not change the relationship between the
values in this column; the longest remains the longest and what is half as long remains half as long. With the option
enabled, the figures are simply all made larger (and the column total is much above 100%). With % with children
relative to real time enabled, 25% means that calls to the current function (and child calls) consumed a quarter of
the entire profiled time. With the option disabled, the 25% would become much smaller, say 7.9%, and it would
mean that calls to the current function (and child calls) consumed nearly 8% of the total time spent on any call
during profiling, child calls being counted once for themselves, once more for their caller, once more for their
caller's caller, etc. The column total would be 100%.

Sorting or filtering on Time % and % with Children will show up the most time-consuming functions. There
is a predefined view for the Function Profiler, Top 10 Procedures, which filters the results to only display the ten
functions that take the most time to execute their own code. You can select it from the Views dropdown list on the
Standard toolbar (see Views Implementation).

Comparing Time(s) and Time with Children (or Time % and % with Children) will tell you whether the time
cost of a call is due to the function called, or the functions in calls in turn.

To explore the source code of a function, double-click its line in the Report panel and switch to the Editor panel.
The source can only be displayed if the source file is on the Search Path. See also AQtime Panels – the
Disassembly, Call Graph and Details panels are also updated by double-clicking a line in the Report panel.

Depending on the Function Profiler Options, Display in Editor gutter section, various counts will appear in the
Editor gutter next the start of each profiled function. This is one more means of browsing the Function Profiler
results. Note that the Editor gutter can display incorrect information for some C++ programs that use several
functions based on the same template (see Template Functions Restriction in on-line help). However, the correct
profiling results are displayed in the Report panel.

The Details panel acts as a "magnifier" for parent-child call relationships related to one line in the Report panel.
See Function Profiler - Details). Here is a sample:

Function Trace Profiler

Copyright © 1999-2001 AutomatedQA Corp. support@automatedqa.com

103

Double-clicking on a line in the Details panel will update the other panels to the function displayed on that line.
Switching from panel to panel in this way, in order to get the marrow out of the Function Profiler results, is made
much easier by the "browser" buttons, Back and Forward on the Report toolbar.

Some routines listed in Details may have zeros in the Time, Time with Children. % Time and % with Children
columns. This means that the routine was called recursively during profiling. See Profiling Recursive Functions in
on-line help.

Function Trace Profiler

Description
The Function Trace profiler visually displays the sequence of function calls in real time. It is a good means to find
what function is being executed at a given point in time. One good application for it is when you need to know the
actual call stack for a function (e.g. a function that raises an exception). Another is when you need to know whether
something occurs in the application at the expected point, for instance, whether the application posts data to the

Profilers Reference

http://www.automatedqa.com AQtime by AutomatedQA Corp.

104

database straight after a user has pressed OK. Another good application of Function Trace, again, is to profile an
application with complex recursive calls.

The Function Trace profiler requires an extra tool that is not supplied with your AQtime installation. This can be
either:

- CodeSite (http://www.raize.com/CodeSite/) or
- Overseer (Freeware-Open Source, http://delphree.clexpert.com/pages/projects/nexus/download.htm),
If you are using Overseer, you must initialize it before running the Function Trace profiler. You do this simply

by launching then closing Overseer outside of AQtime.
Real-time display can be on either of these tools, or also on the Event View panel. To use the panel for this,

make sure that Event View is enabled as one of the Hierarchy display location options for the profiler. See Function
Trace Options.

The Function Trace profiler shows each call, with the amount of detail you specify in Options. It is not a
statistical tool, but totally detail-oriented. It is very easy to both slow your application to a crawl and to generate a
flood of detail, simply by letting Function Trace profile too much of the application in one run. Use Areas, use
Triggers, use the System options. See Controlling What To Profile. When you take care to correctly restrict what
gets profiled, you'll find Function Trace indispensable.

The results remain in whatever display(s) you chose, once the run is done. Using CodeSite or Overseer you will
have something similar to:

http://www.raize.com/CodeSite/
http://delphree.clexpert.com/pages/projects/nexus/download.htm

Function Trace Profiler

Copyright © 1999-2001 AutomatedQA Corp. support@automatedqa.com

105

For each call, two messages are displayed, one on entry and one on exit. If many child calls intervened, the two
lines may be quite distant from one another. If the Trace with parameters option is set, the first message includes
the parameter names and values, as a string. Concerning this parameter information, note the following:

• For object methods, there is always the memory address of the object itself.

• For some Borland VCL constructors and destructors an additional parameter can be displayed. It does not
exist in source code but is added by the compiler.

• If the application was compiled with Optimization enabled, parameter names and values may be incorrect.
We recommend that you turn Optimization off if you mean to trace parameter values on calls.

• Parameters will not be found by the profiler if the application has been compiled with debug information in
PDB format (see Compiler Settings for Microsoft Visual C++).

• Parameters will not be shown for Win API calls since of course there is no debug information for these.

• There are other limitations too. See Function Trace Profiler - Displaying Parameters.

The Find Matching Methods button on the CodeSite or Overseer toolbar lets you move quickly between
the entry and exit messages. This is the way to easily see when any call began and when it ended (the call bounds).

Profilers Reference

http://www.automatedqa.com AQtime by AutomatedQA Corp.

106

Displaying Parameters
The Function Trace profiler can display the parameters passed on function calls, as well as the return value.

However, the type of information displayed depends on several conditions.
1. For methods the first parameter always holds the instance address in memory.
2. Neither value nor name can be shown for the parameters of Win API calls. For this, you may use the Memory

and API Resource Check profiler.
3. No parameter information is available for Visual C++ or Visual Basic applications using the PDB debug info

format.
4. For Visual C++ and Visual Basic using the DBG format, the parameter values are shown, but not the names.

Points 6 and 7 also apply.
5. For Borland Delphi and C++Builder, both value and name are given except where points 6 or 7 apply, or in the

following cases, where the parameter values are given, but not the names –

• VCL routines for which the compiler does not provide parameter names.

• The last parameters of routines with a variable number of parameters.

• The application was compiled with the Local Symbols option disabled. Or the present unit (.dcu) was
compiled with Local Symbols disabled.

VCL Profilers

Copyright © 1999-2001 AutomatedQA Corp. support@automatedqa.com

107

6. With any compiler, for parameters passed by reference the value is not shown, only the address.
7. With any compiler, for the following parameter types the value is not shown, only the parameter's address –

• Pointers

• Strings (except Borland VCL String and WideString types)

• Arrays

• Variants

• Object types
8. Several conditions can cause a function's return value to be displayed incorrectly. The following cover most

such cases --

• The result value is calculated in code after the function returns. This is the case, e.g., with functions that use
the Borland VCL safecall calling convention.

• The result type is a 64-bit integer.

• The result type is a Variant. In this case, the result value displayed is the Variant's address.

• The result type belongs in the list in point 7. Here also, the value displayed will be the result's address in
memory.

VCL Profilers

AQtime includes two VCL profilers, VCL Class and VCL Reference Count. The VCL (Visual Component Library)
is Borland's main library for applications built with Delphi or C++Builder. These two specialized profilers analyze
the use of VCL classes, report about leaked objects and help find their source (creation point). They profile the
entire run, without taking any account of Areas or Triggers.

To get the full use out of the VCL profilers, you will need to recompile the Borland VCL with Stack Frames
enabled. See Compiler Settings for Borland Delphi and Compiler Settings for Borland C++Builder for details. The
profilers record the state of the call stack when resources are added. To trace the call stack, they assume that every
call (outside System) uses stack frames. When the assumption is wrong, the errant call that caused the leak may be
missing from the stack displayed in Details (depending on whether the call occurred within an event handler or
within a routine called by another one in your code).

Next, to enable VCL profiling, you must first make sure the VCL libraries are in the exe itself. When compiling,
either turn off Delphi's or C++Builder's Build with runtime packages option, or add VCL libraries to the open
project. See Compiler Settings for Borland Delphi and Compiler Settings for Borland C++Builder.

The VCL Class Profiler (or instance profiler) logs calls to the NewInstance and FreeInstance methods of
TObject. It reports how many instances of each class have been created in total and the peak count attained during
the run. It also shows whether any object remained in memory after program termination.

The VCL Reference Count Profiler (or interface profiler) logs calls to AddRef and Release and likewise
reports how many references were used for each interface, in total and as a peak count for the run, and shows
whether any interface had references left after program termination.

One technical note. Since by default the Reference Count profiler logs calls to the AddRef and Release methods
of TInterfacedObject, it will miss the cases where a child class of TInterfacedObject overrides these methods, and
the new implementations do not call the inherited methods. However, you can set the profiler to log another
ancestor implementation of AddRef and Release than that of TInterfacedObject. This is the purpose of the VCL
Reference Count Profiler's Classes option. (See Profilers Options - VCL Profilers).

Profilers Reference

http://www.automatedqa.com AQtime by AutomatedQA Corp.

108

While the VCL profilers ignore Areas and Triggers, they do not ignore the Enabled/Disabled Profiling
button. Using it, however, may very well put their create and release counts out of step, so that at the end they will
report spurious "leaks". Beware! See Leaked Objects Restriction in on-line help.

When a VCL profiler displays its results in the Report panel, there is a line for each class that got at least one
instance created, or for each interface that received at least one reference. For unreleased objects or references, the
Details panel will display the call stack at that the instance was created or that the first reference was added.

Here are sample results from the VCL Class Profiler:

The Report panel uses the following columns:

Class Name Name of the class.
Current (Leaks) Number of instances still in memory after termination.
Instance Size Size of each instance in bytes.
Current Size Total size of leaks for the class, in bytes: Current (Leaks) * Instance Size.

VCL Profilers

Copyright © 1999-2001 AutomatedQA Corp. support@automatedqa.com

109

Total Created Number of instances created during the run.
Total Size Memory needed for all the instances created during the run: Total Created * Instance

Size. This is not the maximum allocated for the class; see Peak Size.
Peak Created Maximum number of concurrent instances reached during the run.

Peak Size Maximum amount of memory allocated at once for instances of this class: Peak Created
* Instance Size.

For the VCL Class profiler there is a predefined view Leaked classes only, which shows only classes with
leaked instances. You can select this view from the View box on the Standard toolbar.

To find what method created a leaked object, double-click the line for its class in the Report panel. This will
scroll the Details panel to the display instances of this class.

For the VCL profilers, Details holds two horizontal sections. The topmost (Instances or Interfaces) lists leaked
objects or unreleased references with their creation details. Clicking on one updates the bottom one (Call Stack) to
show the call stack at the moment of creation – the topmost line will be the routine where the object was created or
the reference added, the next line will be the routine that called it, etc. Double-clicking on a line in the Call Stack
section will show the source code for this routine in the Editor panel (if it is available).). Note that the call stack is
traced only if the Stack | Show call stack option is enabled.

The picture somewhat above this point shows Details for the VCL Class profiler. The only column needing
some explanation is #. This is the instance number in the order of creation for instances of that class. The picture
below shows Details for the VCL Reference Count profiler. Here, # is the reference number, in the order in which
references were added for that interface. For complete information on columns in the Details panel, see VCL Class
Profiler - Details and see VCL Reference Count Profiler - Details.

Profilers Reference

http://www.automatedqa.com AQtime by AutomatedQA Corp.

110

Here, for the VCL Reference Count profiler the Report panel holds the following columns:

Class Name Name of the class implementing the interface.
Unreleased References Number of references for this interface not released by the end of the run.
Total AddRef Total number of references added for this interface during the run.
Peak References Maximum number of simultaneous references to this interface reached

during the run.
Class size Size of the class in bytes.

Sampling Profilers

The Sampling profilers poll the process for the application being profiled at regular micro-intervals to know what
part of the code is executing at that instant. They provide excellent statistical information on time use within the

Sampling Profilers

Copyright © 1999-2001 AutomatedQA Corp. support@automatedqa.com

111

application, at practically zero cost on application speed. This is a very quick way to find the time hogs within the
application. But very quick functions will mostly slip through the mesh unobserved.

The Sampling profilers require Windows NT or 2000 to do their work. Their polling micro-interval can be
changed in the Sampling Profiler Options dialog. Extending it is a way to concentrate the observations on the
slowest functions. Note that when the process is not running, no observation is taken. This is the case for instance
when the sleep WinAPI command has been given.

As sampling has almost no effect on performance, The Function Sampling profiler is an excellent tool to use
on the FULL CHECK Area (see Setup panel). Its results will not be as accurate as those of the Function Profiler,
but they will be achieved much quicker. Once poorly performing areas have been identified narrowly enough, the
Function Profiler can be brought to bear on them.

The Function Sampling profiler records how often each function (above mesh size) was found running at a
polling instant (the sample count for the function). The Line Sampling profiler does likewise for each line, but of
course only the slowest lines will give statistically valid poll information.

At the end of the run, the sample count is found not only in the Report panel, but also in the gutter of the Editor,
at the start of each profiled function for the Function Sampling profiler, and at the start of each line in a profiled
function for the Line Sampling profiler.

Here is an example of the Report panel after a Function Sampling profile run:

Profilers Reference

http://www.automatedqa.com AQtime by AutomatedQA Corp.

112

The panel uses the following columns:

Class Name If the function is a method, name of the class it belongs to.

Procedure
Address

Function address in memory.

Procedure Name Full name of the function, including class name.
Samples # Sample count: the number of times the function was found executing at a poll interval.

The total sample count for all profiled functions appears in the footer of this column.
Source File Name of the source file for the function.
Source Line Source file line number where the function’s implementation begins.
% Selection The sample count as a percentage of the total sample count for all functions shown in

the Report panel according to the current filter.
% Total The sample count as a percentage of the total sample count for all profiled functions.
Time (s) The sample count translated into approximate seconds. See below for the accuracy of

Sampling Profilers

Copyright © 1999-2001 AutomatedQA Corp. support@automatedqa.com

113

the translation.
Unit Name Name of the linkage unit holding the function.

In order to translate a sample count to seconds, a calibration loop is run at the start of profiling to find how many
polling intervals there are per second. The longer this loop runs, the more accurate will be the estimate (but it is still
an estimate). The loop count is set as Calibration loop count inside Sampling Profiler Options.

Source File, Unit Name and Source Line will let you identify the source for the functions with high sample
counts. You can also first isolate the ten worst simply by selecting the Top 10 procedures view from the View
dropdown list on the Standard toolbar.

You can directly check in the Editor the source for any function by double-clicking on its line in the Report
panel. This also refreshes the Disassembly panel to display the binary code for the function. See AQtime Panels.

The Line Sampling profiler lets you pursue with the same quick, easy tests inside the most suspect functions
revealed by Function Sampling. The Report panel will display all lines in the profiled functions, for which there
was at least one sample (that were running at least once at a polling moment). The following is an example:

Profilers Reference

http://www.automatedqa.com AQtime by AutomatedQA Corp.

114

The panel uses the following columns:

Source File Name of the source file to which the line belongs.
Procedure Name Full name of the function to which the line belongs, including class name.
Procedure Address Function address in memory.

Class Name If the function is a method, name of the class it belongs to.

Source Line The number of the line in the source file.
Samples # Sample count for the line. The total sample count for all lines in profiled

functions appears in the footer of this column.
Sample Address The approximate memory address for the line. See the explanation below

concerning the Shift size option.
% Selected The sample count for this line as a percentage of the total sample count for all

lines shown in the Report panel according to the current filter.
% Total The sample count for this line as a percentage of the total sample count for all

lines in profiled functions.
Time (s) Approximate total time spent executing the line, outside of any call, in seconds. The

Calibration loop count option sets the precision of the estimate.

Unit Name Name of the linkage unit holding the function to which the line belongs.

Selecting the Top 20 view is a quick way to focus on the twenty most time-consuming lines in the profiled
functions.

There is a restriction, though: Line profilers should not be used with applications that use hooks. See Profiling
Applications That Use Hooks.

An important parameter for the Line Sampling profiler is the Shift size option (see Sampling Profiler Options in
on-line help). Line Sampling at each poll interval finds the code address currently being executed. To work faster, it
can skip resolving this address down to the last bit, and assign all addresses within a binary block (4, 8, 16, …
bytes) as belonging to one line. The Shift Size is the binary exponent used, or the number of trailing bits dropped.
More important, the fewest memory blocks the profiler has to take into account, the less the memory requirements.

For instance, Shift Size 4 means that addresses are resolved in blocks of 16 bytes. Lines that fit easily within
these 16 bytes will be wrongly accounted – all polling that finds that block executing will count it as an execution
of the first possible line. Lines that span many times 16 bytes will be correctly accounted for within statistical
limits. In between is a gray area. But the point of Line Sampling is to get statistics for the slowest lines, not 16-byte
or even 64-byte lines. At the cost of miscalculating lines for which, in any case, the statistics would be totally
unreliable, the work of the Line Sampling profiler can be done using reasonable amounts of memory, and at good
speed, even when it has many lines to poll for (the usual case).

The Sample Address column actually holds the starting addresses of the first block attributed to each line, rather
than the exact starting address of line code in memory.

Shift Size also applies to Function Sampling, but its effect there is less important.

Platform Compliance Analysis

Copyright © 1999-2001 AutomatedQA Corp. support@automatedqa.com

115

Platform Compliance Analysis

The Platform Compliance profiler helps determine whether the profiled application can work on a specific
platform (operating system). It is a static profiler. Running it means running the profiler on the application, but not
the application itself. It can be run on selected Areas if needed.

The Platform Compliance profiler is so remarkably informative, complete and easy to run (a matter of seconds)
that you will likely run it on all your applications. Its one limitation is that it depends on static information. All
platform calls under Windows are DLL calls. DLLs can be statically linked, i.e., be called using addresses defined
at compile time, or dynamically linked, that is, be called using addresses found at runtime only, and especially from
DLLs that are likely to change. Platform Compliance cannot check dynamically defined calls.

This limitation especially affects profiling Visual Basic applications. In VB, statically linked calls are those
defined through the DECLARE statement. If your VB application uses only the MSVBVM50 (Visual Basic 5.0) or
MSVBVM60 (Visual Basic 6.0) libraries and uses no DECLARE of its own, Platform Compliance Analysis will
yield no information at all in the Report pane.

Statically linked calls are said to be exported, and their target functions to be imported at runtime from system
libraries which export them (make them available to external calls). The Platform Compliance profiler analyzes
all exported calls that address system libraries (i.e. DLLs), and checks which platforms' libraries will support the
call, and how -- Windows 95, Windows 98, Windows NT, Windows 2000, Windows CE or WINE. This
analysis is done against a database of compliance information that is part of the AQtime installation. You can
update the database using the Win API Database Editor – an additional tool available at our web site
(www.automatedqa.com).

Here is an example of Platform Compliance Analysis output:

http://www.automatedqa.com

Profilers Reference

http://www.automatedqa.com AQtime by AutomatedQA Corp.

116

The Report panel holds the following columns:

API Name Function name according to the system API (Application Programming Interface).
Module Name Name of the application module (.exe, .dll, etc.) which calls the function.
Imported
From

Name of the system DLL (may or may not be *.dll) which exports the function.

Platform Platform (OS) name.
Compliance Compliance of the call for this platform. This column can display the following

values:
Supported The call is correctly supported.
Unsupported The function is absent from the DLL for this OS. When loading the
DLL, the application will display an error message.
Obsolete The function is present and active, but obsolete. Using it is not
recommended by the platform maker.

Exception Tracer

Copyright © 1999-2001 AutomatedQA Corp. support@automatedqa.com

117

Special Requirements The call will be supported if some additional software is
present on the machine, as listed in Notes. If the software is absent, the compliance
status is Unsupported. For instance, some calls to Windows NT 4.0 require Service
Pack 4.0 or later.
Non-Functional Though MSDN reports this function as "unsupported", it is
present and will prevent an error message from being posted. However, calls to it will
do exactly nothing.
Special Usage The function is present and active, but it is not fully functional. E.g. it
may ignore some parameters.
Unknown AQtime does not have any information about the function.

Notes Additional information about compliance conditions.
Ordinal Ordinal number of the function taken from debug information. If the debug

information does not provide it, the value shown is 0.
Reference Hyperlink to the on-line function documentation. To open it, simply double-click on

the cell.

The Platform Compliance profiler uses a special type of filtering that is set before data collection. Calls with a
certain compliance status can be eliminated from the results for clarity. This pre-filtering is set by the Platform
Compliance Settings dialog. If the Customize settings before profiling option is enabled (in Profiler Options) the
dialog will be displayed before starting each run of the Platform Compliance profiler.

Warning-type compliance values are always included in the results, to wit, Non-Functional, Special Usage,
Special Requirements and Unknown. Other compliance categories can be filtered out through the first two settings
in the dialog:

Obsolete and Unsupported Supported functions are removed from results. Functions of other
categories remain.

Only Unsupported Supported and Obsolete functions are removed from results. Functions of
other categories remain.

Full Analysis All compliance categories are included in results.

Exception Tracer

The Exception Trace profiler monitors the application execution and if an exception occurs it outputs exception
information (exception type, address, call stack, etc.) on the Event View panel. This profiler works faster in
comparison with other profilers and does not slow down the tested application greatly. Use it if you need only to
explore exceptions that occur during the application execution.

Profilers Reference

http://www.automatedqa.com AQtime by AutomatedQA Corp.

118

Note that you can view the source code of a routine in the call stack: Simply double-click the routine in the
Event View panel and then switch to the Editor one.

Since this profiler uses the Event View panel, the Exceptions | Active option of this panel must be turned on.
Else, the Exception Trace profiler displays an error message and does not start profiling. The other Event View
options specify what information will be displayed when the exceptions occur. See Event View Options.

Unused VCL Units Profiler

Unused VCL Units Profiler – Description
When you add a unit to the uses clause, the Delphi linker will always include this unit into the executable file, even
if a program does not use any procedures from this unit. This can occur when you drop a component onto a form to
have a look at it and then you delete the component from the form. The Delphi IDE does not remove the
component’s unit from the uses clause.

Delphi includes an optimizing linker that will not link any functions from this unit if they are not referred to
from other sections of your code. However, each unit has initialization and finalization procedures generated by the
Delphi compiler (they are generated behind the scenes even if you do not create those sections in source code).
These procedures are used to execute the unit's initialization and finalization code and to clear global unit reference-
count variables when exiting the program.

AutomatedQA’s Unused VCL Units profiler scans all units that are included into a project and checks whether
they are used in an application or not. Upon finishing these operations, the profiler displays a list of units that are

Unused VCL Units Profiler

Copyright © 1999-2001 AutomatedQA Corp. support@automatedqa.com

119

not used in the project. For each unused unit it also provides an additional list that tells you which application units
refer to the unused one. On the basis of these lists you can decide if you want to remove a unit or not. For more
information on how to work with the profiler, see Unused VCL Unit Profiler – Principles of Operation.

Since units use one another, you should run the Unused VCL Units profilerseveral times to remove all unused
modules. Please review Unused VCL Units Profiler – Principles of Operation.

This profiler ships with full source code and a sample application to allow AQtime users to have a look at how
to create a custom profiler that iterates through the project’s units and procedures. The sample application is located
in the directory wherein the Unused VCL Units plug-in is installed.

Note that the Unused VCL Units profiler does not analyze the application type before running. That is, profiling
of non-VCL application will produce no results.

Here is an example output from the Unused VCL Units profiler:

The Report panel displays a list of "doubtful" units (the profiler "thinks" they are not used in the application).
The Details panel holds a list of application units that refer to the one selected in Report. These are units from
which you can remove the reference to the selected one. Both panels include the following columns -

Profilers Reference

http://www.automatedqa.com AQtime by AutomatedQA Corp.

120

Unit Name The name of an unused unit.
Module Name The name of the module (EXE, DLL, etc.) that uses the unit specified in the Unit Name

column.

Source File The source file name for a unit.

To explore the referring files or source code of a unit, simply double-click its name in the Report panel and then
switch to Details or to the Editor panel.

Unused VCL Units Profiler – Principles of Operation
The Unused VCL Units profiler is a static analysis profiler. It helps you find units that are included in your
application, but are not used by your application. If a unit is not actually used by the application, its initialization
and finalization code is called only.

The Unused VCL Units profiler includes database that holds information about the number of procedures used
by initialization and finalization sections of each standard VCL unit. This profiler compares the number of
procedures exported by a unit with the number specified for this unit in the database. If the unit exports more
functions than the database indicates, the profiler regards it as a used unit. If the number of exported procedures is
equal to the number specified in the database, the unit is included into the list of the unused ones.

However, it is not possible to determine with 100% accuracy what units should be removed from your
application. For instance, if a unit holds only constants and variables used by the application, and it does not export
any procedures, you do not have to remove it from the application. Some more examples: unit A uses only class
types declared in unit B; Or unit A uses a class declared in unit B and this class contains only inherited methods and
does not define its own ones. In both cases, the profiler will report that unit B is not used in unit A while it is used
indeed. The Unused VCL Units profiler includes a specific option, Unused units with names containing, that allows
you to exclude such units from analysis. See Unused VCL Units Options.

You can use an alternate method of excluding a unit from analysis: Add the unit name to the IgnoredUnits.txt
file that ships with the Unused VCL Units profiler. This file holds three lists of units - for Borland Delphi ver. 3, 4
and 5. All units, listed in the file, are considered used.

To find units that refer to the unused one, the profiler scans the source code (namely, the uses section) of each
application unit. If a unit refers to the unused one, it is added to Details. That is why the Unused VCL Units profiler
must "know" paths to all units in the application. To specify the search path, use the Search Directories or Project
Search Directories dialogs.

Units import one another, so you must execute the Unused VCL Units profiler several times to remove unused
modules from your application. For example, your project contains two unused units - Buttons and Graphics
(standard VCL units). The Buttons unit uses some procedures from the Graphics one. So, the number of exported
procedures for Graphics is greater than the number specified for this unit in the database. Therefore, the Unused
VCL Units profiler considers the Graphics unit to be used. After the first launch, the profiler will report that only
the Buttons unit is unused. Remove this unit from your project, recompile the application and return to AQtime.
After the second launch, the profiler will report that the Graphics unit is not used.

The number of procedures in the initialization section varies from one Delphi version to another. The Unused
VCL Units profiler works with Borland Delphi ver. 3, 4 and 5. To specify which Delphi version was used to build
an application, set an appropriate value for the Delphi version option before profiling.
In addition to standard VCL code, the Unused VCL Units profiler can analyze user-defined units. It includes two
options, Initialization lines discarded and Initialization bytes discarded, used to profile custom units. See Unused
VCL Units Options.

ATL Reference Count Profiler

Copyright © 1999-2001 AutomatedQA Corp. support@automatedqa.com

121

ATL Reference Count Profiler

ATL Reference Count Profiler – Description
The ATL Reference Count profiler analyzes the usage of ATL classes and COM objects in applications using the
Active Template Library, built with Microsoft Visual C++ or Borland C++Builder. Before launching this profiler,
make sure the executable is compiled with Run-TimeType Information. See ATL RefCount Profiler- Compiler
Settings.

The ATL Reference Count profiler is similar to the VCL Reference Count profiler. It determines how many
references of each interface have been used (total and peak at any one time) and tracks whether certain objects stay
in memory after application termination because of unreleased references from the application.

The ATL Reference Count profiler tracks calls to the AddRef and Release methods of classes inherited from the
following ATL classes. (For more information on these classes, refer to the ATL Library Help.)

- CComObject
- CComAggObject
- CComPolyObject
- CComTearOffCachedObject
- CComTearOffObject
- CComObjectNoLock (for more information on these classes, refer to the ATL Library Help).

The profiler always analyzes the entire run, independent of any Areas or Triggers. Here is an output sample:

Profilers Reference

http://www.automatedqa.com AQtime by AutomatedQA Corp.

122

The Report panel displays all classes created during the run. It holds the following columns:

Class Name Name of a class using an ATL interface.
Unreleased References Difference between calls to AddRef and to Release, for the class.
Total AddRef Total number of calls made to AddRef during the run.
Peak References The maximum number of simultaneous references reached during the run.

Unlike Report, the Details panel only displays information about unreleased interfaces. It includes two panes: The
upper one, Interfaces, holds a list of calls to the AddRef and Release methods of a class. It has the following
columns:

Class Name Name of a class with an interface leak.
Kind Call: AddRef or Release.
Instance Address The address in memory of the unreleased object.
The creation number of this instance for the class. The first instance

constructed is 1, the second 2, etc.

ATL Reference Count Profiler

Copyright © 1999-2001 AutomatedQA Corp. support@automatedqa.com

123

If you have enabled Show call stack in the Profiler Options, you can view the call stack at the moment of any call
listed in the Interfaces pane. Double-click on it and switch to the lower pane, Call Stack. The topmost row lists the
method that made the call to AddRef or Release, the next row - the caller for the top-row method, and so forth. The
available columns are:

Procedure Name Method, function or procedure. Called Procedure below.
Class Name Class holding Procedure if it is a method.
Module Name Executable module holding the binary code for Procedure.
Unit Name Unit where Procedure is defined.
Source File Source file holding the implementation for Procedure.
Line No Line on which the implementation for Procedure begins in Source File.
Stack Entry No Procedure's index in the call stack. The topmost routine has index 1.

Double-clicking on a row in the Call Stack pane will update the appropriate panels to show this routine – Editor,
Disassembly, Graph, etc. Switching to the Editor will give you the source for the routine, and so forth.

You can arrange the Report and Details panels in the usual manner.

ATL RefCount Profiler – Compiler Settings
To be profiled with the ATL Reference Count profiler, an application must meet two requirements. First, the
application must be compiled with debug information (see Preparing a Project For AQtime). Second, it must be
compiled with Run-Time Type Information (RTTI). If a tested application does not include RTTI, the ATL
Reference Count Profiler cannot determine the names of classes used. Profiling results will hold “Class without
RTTI” in place of the class name.

This topic explains how to include RTTI in the executable:

Microsoft Visual C++
1. Open your application in Visual C++.
2. Call the Project Settings dialog (press ALT-F7 or select Project | Settings… the main menu).
3. Then, switch to the C++ tab and choose the C++ Language category from the dropdown list.
4. Turn on the Enable Run-Time Type Information (RTTI) option.
5. Rebuild your application.

Borland C++Builder
1. Open your application in C++Builder.
2. Choose Project | Options… from C++Builder’s IDE. This will call the Project Options dialog.
3. Select the C++ tab.
4. Check Enable RTTI in the Exception handling section.
5. Rebuild your application.

Profilers Reference

http://www.automatedqa.com AQtime by AutomatedQA Corp.

124

BDE SQL Profiler

The execution speed of a database application depends directly on the speed of SQL queries. The BDE SQL
Profiler times the execution of SQL queries and SQL stored procedures when commanded through the Borland
Database Engine.

The BDE SQL Profiler works with applications compiled with Borland Delphi v. 2 - 5 and C++Builder v. 3 - 5.
It tracks calls to the CreateCursor and Prepare methods of the TQuery object and calls to the ExecProc and
Prepare methods of the TStoredProc object (CreateCursor is called from the Open and ExecSQL methods).

Here is an example of the BDE SQL Profiler output:

The Report panel displays information about the called methods using the following columns:

Operation Type Type of the DB operation. One of the following:

− TQuery.CreateCursor (this operation is performed within TQuery Open or
ExecSQL methods)

Memory and API Resource Check Profiler

Copyright © 1999-2001 AutomatedQA Corp. support@automatedqa.com

125

− TQuery.Prepare

− TStoredProc.ExecProc

− TStoredProc.Prepare
Name Name of the query or stored procedure.
Class Name Class name for the query or stored procedure. Normally this is TQuery or

TStoredProc.
Time(s) Execution time in seconds the query or stored procedure. This does not include

fetch time.
SQL expression SQL code executed. This field is empty for stored procedures.

In addition to the Report panel column, the executed SQL expression is displayed in the upper part of the Details
panel called SQL, with color syntax highlighting.

If the Show call stack option is on, the BDE SQL profiler tracks the call stack for the analyzed methods and
displays it in the lower pane of Details, named Call Stack. The topmost line is the top of the stack, that is, it shows
the method that called the BDE operation currently selected in the Report panel. Each line below shows the caller
of the line above it. The Call Stack grid uses the following columns:

Procedure Name Method, procedure or function name.
Class Name Class name if Procedure is a method.
Module Name Name of the executable module (exe, dll, etc.) where the binary code for Procedure

ran from.
Unit Name Name of the source unit for Procedure.
Source File Name of the source file for Procedure.
Line No Line number, in Source File, where the implementation of Procedure begins.

To view the call stack for a method from the Report panel, simply double-click it there and switch to Details. To
view source code for any routine in Call Stack, double-click it and open the Editor Panel.

Memory and API Resource Check Profiler

General Overview
This profiler tracks the current project, monitoring each call to API functions and memory allocation. It performs
the following tasks:

• Checks whether the profiled application creates resources correctly and releases all allocated resources.
Resource leaks are traced only for those functions that work with pens, brushes, pictures, icons, bitmaps,
fonts, etc. For the full list of the checked GDI functions, see List of Checked Functions.

• Analyzes the use of the memory management functions, i.e.
- GetMem, FreeMem, ReallocMem, New and Dispose (Delphi and C++Builder functions);
- malloc, calloc, realloc, expand and free (C++ functions);

Profilers Reference

http://www.automatedqa.com AQtime by AutomatedQA Corp.

126

- new and delete (C++ operators).
These functions are traced in all situations (for instance in constructors and destructors). The full list of
functions checked for memory leaks is in List of Checked Functions. If a resource or a memory block was
not disposed of, AQtime inserts a record into the Report panel. This record holds information about the
function that allocated the block.
Traces whether your application uses allocated memory blocks correctly, that is, whether all memory writes
are within bounds of currently allocated blocks, and whether no call to free applies to a currently unallocated
block.

• Checks parameter values and return value for all resource-related API calls. Further calls can be checked for
by modifying the database used by the profiler. The AutomatedQA web site (www.automatedqa.com) offers
an extra tool to allow you to do this, the Win API Database Editor.

The Memory and API Resource Check profiler is supplied in your AQtime installation as an optional plug-in. It
adds a Leak Filters page to the Create Filter Condition dialog. It also supplies a number of predefined Views for its
results (see Memory and API Resource Check – Description of Results). Used with the Real-Time Monitor plug-
in, the profiler can display its results during the run, as they occur.

Memory and API Resource Check can only operate over the entire run of the application. It takes no account of
Areas or Triggers, and disables the Enable\Disable Profiling button.

Profiler results and columns of the Report and Details panels are explained in Memory and API Resource
Check – Description of Results. Some additional notes about VC++ application profiling are in Profiling VC++
Applications With Memory and API Resource Check. Resources or memory blocks may sometimes be reported as
unreleased when they are released. This depends on the order in which the DLLs are loaded and unloaded from
memory. See Leak Resources Restriction.

Description of Results
The Memory and API Resource Check profiler is installed in the WinAPI Analysis group of AQtime profilers. On
launching it displays the Settings dialog, where you can specify modules and function types to be profiled. (This
can be turned off by disabling Customize settings before profiling option).

Memory and API Resource Check will analyze only modules selected in the Modules page of the dialog. When
you run the profiler for the first time, this page holds only modules specified in the Setup panel. In the course of the
profile run AQtime detects modules (EXEs, DLLs or OCXs) being loaded into the memory and adds them to the
page. Another page of the Settings Dialog - Hook Extensions - specifies what function types will be profiled.

Below is an example of the Memory and API Resource Check profiler output:

http://www.automatedqa.com

Memory and API Resource Check Profiler

Copyright © 1999-2001 AutomatedQA Corp. support@automatedqa.com

127

The Report panel includes the following columns:

Resource ID in creation order (earlier allocations get lower ID numbers). Errors are
counted as resources.

Name API function called.
DLL Name Library the function is exported from.
Kind Function category. The profiled function categories are selected in the Settings dialog.
Image Icon for the category. E.g. indicates errors of all types.
Reference Hyperlink to the MSDN topic concerning the function. To open the topic, double-click

the hyperlink.
Resource Function name with actual parameters of the function call.
Size Size of the memory block. This column holds 0 for the other types of resources.
Thread Id Identifier for the thread where the function was called.

Profilers Reference

http://www.automatedqa.com AQtime by AutomatedQA Corp.

128

Value A value that is associated with the resource: For GDI resources (pen, brush, bitmap,
etc.) this is the handle to the GDI resource, for memory blocks this is the address of the
block in memory, etc. This column holds 0 for errors and warnings.

The Details panel holds two panes: Call Stack and Notes. These panes display additional information about the
function selected in the Report panel. The Notes pane contains a short description of the function.

If the Stack | Show call stack option is on, the Call Stack pane of Details displays the sequence of function calls
that lead to calling the function. Note that Memory and API Resource Check can trace the call stack using two
different methods depending on the Stack | Rely on stack frames option. The Call Stack pane holds the following
columns:

Procedure Name Function or procedure called.
Class Name Class the function belongs to if it is a method.
Unit Name Unit the function is declared in.
Module Name Module (EXE, DLL or OCX) where the function is located.
Source File Source file holding the function code.
Line No Line at which the function code begins in the source file.
Call Address Function address in memory.
Stack Entry No Function position in the stack. The function with index 1 is the immediate caller of the

function selected in the Report panel.

Click a function in the Report panel to select it and view its call stack and description in Details. Switch to the
Editor panel to view the source for the selected function, and to the Disassembly panel to view its binary code.
When you click a function in the Call Stack pane of Details, AQtime will automatically select this function in the
Report panel and change the contents of the Disassembly and Editor panels.

The Memory and API Resource Check plug-in adds the Leak Filters page to AQtime's Create Filter Condition
dialog. This lets you select results for viewing depending on criteria which only apply to this profiler. A number of
predefined filters are included to help you separate errors in the profiled application from those that occur in VCL
or MFC code.

Along with its custom filters, the profiler includes a selection of predefiened Views, which include both a filter
and a Report panel column layout:

- Filter known leaks
- Filter errors
- Filter warnings
- Filter errors and warnings
- Filter memory leaks
- Default

To apply a View, select it from the Views drop-down list box on the Standard toolbar.
Resources or memory blocks may sometimes be reported as unreleased when they are released. This depends on

the order in which the DLLs are loaded and unloaded from memory. See Leak Resources Restriction.

Memory and API Resource Check Profiler

Copyright © 1999-2001 AutomatedQA Corp. support@automatedqa.com

129

Profiling VC++ Applications
The Memory and API Resource Check profiler tracks functions that allocate or deallocate memory. There are two
ways functions can do this. They can use system memory management calls, or they can call on the runtime
memory manager that is part of the runtime library of VC++ and other tools. A runtime memory manager requests
large blocks from the system, and eventually releases them. It then deals on its own with the many memory-
allocation calls from the application. This improves speed and, more important, avoids thrashing system memory
(frequent allocation and de-allocation of small blocks).

If your application is compiled in the Release version without special settings, the Memory and API Resource
Check profiler will still be able to monitor it, but calls to the runtime memory manager will not be profiled.

To track calls to the runtime memory manager in your VC++ application, you must compile it in the Debug
version. You do this either simply by specifying the Debug compilation variant, or by putting the #define
Debug directive in your source code and then setting compiler options as indicated below. A Debug version
(commanded either way) is compiled to use MSVCRTD.DLL (MSVC runtime, debugging version), and this is
what AQtime uses to monitor the runtime memory manager. See Profiling Memory Management Routines.

Using a Debug version is what we recommend. However, you may prepare a Release version so that the
Memory and API Resource Check profiler can monitor calls to the runtime memory manager:

• Select Project | Settings from the main menu in VC++. This will open the Project Settings dialog.

• Move to the C/C++ page.

• Select General from the Category list and then add _Debug to the preprocessor definitions.

• Select the Code Generation category. Choose Debug Single-Threaded, Debug Multithreaded or Debug
Multithreaded DLL from the Use run-time library dropdown list.

• Press OK to close the Project Settings dialog.
Note that if you wish to profile an ActiveX control, it must be compiled in the Debug version and this "debug

version" control must be registered in the system.
Typically, in VC++ applications many functions are imported from additional DLLs, e.g. MFC42.DLL. For

example, when you call methods of the CPen object, the functions of the MFC42.DLL are used. To make this
library available for the Memory and API Resource Check profiler, you should add it to the Modules page of the
Settings dialog and check it there. Note that you should add the debug version of this library, i.e. MFC42D.DLL
(the letter D suffix indicates that this is a debug version library).

Profiling VCL Applications
Two compiler options are important when VCL applications are to be profiled with the Memory and API Resource
Check profiler:
1. Use debug libraries. This option must be enabled for C++Builder. It is located on the Linker page of the Project
Options dialog.
2. Build with run-time packages. The Memory and API Resource Check profiler analyzes two kinds of memory
management functions: System (Windows) and Memory Manager (runtime library sub-allocator). If run-time
packages are used, the Memory Manager will be located in a VCL package. To profile calls to Mmory Mnager you
have to select this package on the Modules page, or add it to the Setup panel. See Profiling Memory Management
Routines.

Profilers Reference

http://www.automatedqa.com AQtime by AutomatedQA Corp.

130

Settings Dialog
 This dialog lets you specify which function categories will be traced while profiling and which modules (EXEs,
DLLs and OCXs) will be profiled. If Customize settings before profiling is enabled in Memory and API Resource
Check Profiler Options, this dialog appears when you start profiling.

The dialog holds two pages: Hook Extensions and Modules.
In the Hook Extensions page, you can select groups of function categories to be tracked when profiling:

Memory manager VCL Memory
 MSVC++ Memory

 VB Memory
 BCB RTL Memory

COM functions (ole32.dll and
oleaut.32.dll)

 CoInitialize, OLEInitialize, IMalloc, etc.
For the full list of functions checked, see List of Checked Functions -
COM functions.

GDI functions (gdi32.dll and
user32.dll)

 Pen, Brush, Font, etc.

Memory and API Resource Check Profiler

Copyright © 1999-2001 AutomatedQA Corp. support@automatedqa.com

131

 Window, Dialog, Cursor, etc.

 Icon and File Operation
For the full list of functions checked, see List of Checked Functions -
GDI functions.

Kernel functions (kernel32.dll) File, Handle, Process, Thread, etc.
For the full list of functions checked, see List of Checked Functions -
Kernel functions.

Printer functions (printspool.drv) Printer
 Print Dialogs

For the full list of functions checked, see List of Checked Functions -
Print Spooler functions.

Registry functions (advapi32.dll) Registry
For the full list of functions checked, see List of Checked Functions -
Registry functions.

System memory management
functions

 Virtual Memory, Heap, Local Heap, etc.
For the full list of functions checked, see List of Checked Functions -
System memory management functions.

In the Modules page you can select modules to be profiled. During the profiling, AQtime determines what
modules (EXEs, DLLs or OCXs) are loaded and adds these modules to the page. You can add or remove some
modules by pressing the Add Module… or Delete buttons.

Profilers Reference

http://www.automatedqa.com AQtime by AutomatedQA Corp.

132

To avoid excessive profiling, Memory and API Resource Check includes an Ignore system modules option. If it
is on (default state), system dynamic link libraries are excluded from profiling and they are not displayed on this
page.

If a Visual C++ application was built using the MFC library you may need to select MFC4D.DLL for profiling.
See Memory and API Resource Check - Profiling VC++.

For a Borland application compiled with VCL packages, you may need to select VCLxx.BPL. See Memory and
API Resource Check - Profiling VCL Applications. Otherwise, there is no need to add packages or borlandmm.dll to
the current project – Memory and API Resource Check automatically includes them in profiling.

In the case of a Borland application compiled with VCL packages, you may need to select VCLxx.BPL. See
Memory and API Resource Check - Profiling VCL Application. Otherwise, there is no need to add packages or
borlandmm.dll to the current project – Memory and API Resource Check automatically includes them in profiling.

Important! The modules selected in this dialog (Settings) and the modules in the Setup panel are profiled in a
different way. This mostly concerns memory allocation profiling. If you need to profile resource allocation, just
check the necessary module on the Modules page:

• In the modules selected in the Setup panel, the profiler will track all functions that use the memory manager
as well as the system memory management functions (VirtualAlloc, HeapAlloc, etc).

• In the modules selected on here, AQtime the profiler will only track memory allocations done through the
system memory management functions.

A small example: Suppose, your project includes dll and exe files. If you check the dll file in the Modules page
and do not add it to the Setup panel, AQtime will profile only memory allocation that is done using the external
functions (e.g. HeapAlloc). It will not analyze memory allocation performed within the dll using the memory

Memory and API Resource Check Profiler

Copyright © 1999-2001 AutomatedQA Corp. support@automatedqa.com

133

manager (e.g. the GetMem function or the new operator). For more information about memory managers, see
Profiling Memory Management Routines.

Note that, depending on compiler options, the memory manager can be located either in the profiled module or
in a dll (VC++) or package (VCL) used by this module. In this case, you may have to select the module in the
Modules page or add it to the Setup panel to profile calls to memory manager. See Profiling Memory Management
Routines.

Profiling Memory Management Routines
The Memory and API Resource Check profiler tracks functions that allocate or de-allocate memory. There are two
ways functions can do this. They can use system memory management calls, or they can call on the runtime
memory manager that is part of the runtime library of VC++ and other tools. A runtime memory manager requests
large blocks from the system, and eventually releases them. It then deals on its own with the many memory-
allocation calls from the application. This improves speed and, more important, avoids thrashing system memory
(frequent allocation and de-allocation of small blocks).

There are two ways in which you can set what memory allocations the Memory and API profiler will check.
First, in Options | Profiler Options | Memory and API you must enable Profile memory management routines if
you wish calls to the runtime manager to be profiled (runtime-library routines are the "routines" in question here).

Then, of course, the appropriate calling module must have been chosen for profiling in the Setup panel. In the
case of system memory allocations, the calling module will normally be the runtime library module for the
compiler used. If you enable Customize settings before profiling in the profiler options, the Memory and API
Settings dialog will appear before each profile run, giving you a chance to modify the selections from the Setup
panel.

For instance several common Borland VCL routines (GetMem, FreeMem, ReallocMem, etc) are calls on the
VCL memory manager. So, to profile these calls, you should enable Profile memory management routines. The
same applies to the VC++ equivalents, but with this compiler you must also compile your application in the Debug
version. (See Profiling VC++ Applications with Memory and API Resource Check).

Note that memory manager can be located in the profiled module or in one of dynamic link libraries (VC++) or
packages (VCL). This depends on compiler options. If you want to profile calls to memory manager, you may have
to add the module to the Setup panel or select it in the Modules page of the Settings dialog. The following tables
explain this:

VCL
The "Build with run-time
packages" option is…

Setup panel Modules page The memory manager is…

X - - Not profiled
X X - Profiled

Enabled

- X - Profiled
X - - Profiled
X X - Profiled

Disabled

- X - Not profiled

Visual C++
The module uses… Setup panel Modules page The memory manger is…

Profilers Reference

http://www.automatedqa.com AQtime by AutomatedQA Corp.

134

X - - Profiled
X X - Profiled

Dynamically linked DLLs

- X - Not profiled
X - - Profiled
X X - Profiled

Statically linked DLLs

- X - Not profiled

One thing to note: One block can be allocated from system memory to the runtime manager, then re-allocated
from the runtime manager to the application. The Memory and API profiler will recognize that the second
allocation did not add to the total memory allocated for the application. But some other AQtime tools may record
addition. e.g. the Real-Time Monitor.

Checking Bounds of Memory Blocks
The Memory and API Resource Check Profiler includes an option, Check Memory Bounds, that specifies whether
the profiler reports an error when the profiled application writes to addresses above the upper or below the lower
bound of an allocated memory block.

To implement this check, the hooks the functions that allocate memory blocks. It returns a block allocated for 8
bytes more than requested, but the application is informed only of owning the size it requested. 4 bytes are reserved
before the requested block, and 4 are reserved after –

Important notes.
One. The profiler leaves its own signatures in each 4-byte buffer. It knows bounds were exceeded when it finds

a signature to have been overwritten, and it checks for this when the application releases the block. In other words,
if, on top of exceeding the bounds of the block, the application does not release it, the profiler will only report the
unreleased memory. However, one common effect of writing out of bounds is to destabilize the application, leading
to a crash – no memory is released at all. See Process Termination Restriction.

A good workaround is to check the error counter in the Monitor panel during profiling and to press Project |
Get Results in case of an emergency. See Getting Results During Testing.

Two. The application may be coded on assumptions concerning memory, which should not be made, but which
"generally work". It thus may usually work well outside AQtime and misbehave under AQtime with Check Memory

Memory and API Resource Check Profiler

Copyright © 1999-2001 AutomatedQA Corp. support@automatedqa.com

135

Bounds enabled. For instance, it might allocate two consecutive blocks of memory, then attempt to fill them in one
call to ZeroMemory() --

This ruins the memory-bounds checking, of course, but it also constitutes unexpected conditions for the
application itself. The short answer is that applications should not be coded on the assumption that they control the
order of allocations from the memory manager. The workaround is to disable Check Memory Bounds. If the
problem goes away, then this was the probable cause.

Three. Since the bounds-checking control causes additional memory space to be allocated, some tools that trace
the memory usage (e.g. Task Manager) will slightly exaggerate the memory used by your application.

Leak Filters Dialog
The Memory and API Resource Check plug-in includes special filters for better analysis of profiling results. These
filters are available on the Leak Filter page of AQtime's Create Filter Condition dialog. This page is added to the
dialog when you install the plug-in using the Install Extensions dialog.

Profilers Reference

http://www.automatedqa.com AQtime by AutomatedQA Corp.

136

The Leak Filters page holds a list of custom filters that allow you to exclude certain functions from the Report
panel. These filters can be used along with ordinary filters. But they work in a different way: If a record matches an
ordinary filter, it is kept in the Report panel. However, if a record matches one of the enabled Leak Filters, it is
excluded from the Report panel. This page allows you to create filters that will hide some leaks, for instance leaks
that occur in some external libraries and cannot be fixed by you. Detailed information about known VCL leaks is
available at www.automatedqa.com/support/leaks.asp.

Each filter is a group of simple filter expressions (items) that set the actual filtering. Items are displayed as child
nodes of filters, which are parent nodes. You can add, modify and remove filter items:

• To create a new filter item, choose Add new… from the context menu or press Add Filter… . This will
open the Create Filter Item Dialog, where you can tune the filter item properties. Use the Filter Name
combo box in this dialog to specify the filter the item will belong to. If you type a new filter name there,
AQtime will create a new filter with this name.
New filter items are available for all projects unless they are added to a filter called Project Filter. This filter
can be modified but not deleted. Items specified there are available for the current project only.
You can create new filters directly from the Report panel. Just select the desired leak and then choose Filter
Item from the context (right-click) menu. This will call the Create Filter Item Dialog and fill its edit boxes
with data from the Report panel.

• To edit an existing filter item, select it in the Leak Filters list and then choose Modify… from the context
menu or simply double-click the filter item.

• To remove the existing filter item, select Delete… from the context menu.

• To rename the existing filter, right-click it, select Rename… from the context menu and specify the new
filter name in the subsequent Rename Filter dialog.

http://www.automatedqa.com/support/leaks.asp

Memory and API Resource Check Profiler

Copyright © 1999-2001 AutomatedQA Corp. support@automatedqa.com

137

The Leak Filters page holds a number of predefined filters. They help you separate leaks that occur in the
profiled application from those that occur in VCL or MFC code. The predefined filters cannot be modified,
renamed or deleted.

To specify active filters, press the Select Active Filters… button and then select filters to enable in the
subsequent Project Filters dialog. The changes made in this dialog are saved for the current project only.

To save all modifications made in the Leak Filters page and apply filters to the Report panel, press OK. Cancel
will close the dialog and discard any changes.

Predefined Filters
If your application includes code written using MFC, VCL or other libraries, there will be inevitable memory leaks
due to errors in the imported library code. We call them imported leaks. The Memory and API Resource Check
profiler of course tracks these leaks along with those that occur in your own code.

The imported leaks can distract your attention from the faults in your code. The Memory and API Resource
Check profiler provides predefined filters to remove imported leaks from the results display. These filters also
hide "pseudo-leaks" that occur due to the order in which DLLs are loaded and unloaded (see Leak Resources
Restriction).

Currently there are such filters for MSVC 6.0 MFC and Delphi (3.0 to 5.0) applications. To view the structure
of these filters, open the Leak Filters page of the Create Filter Condition dialog (See Memory and API Resource
Check Profiler - Create Filter Condition Dialog). The predefined filters cannot be modified, renamed or deleted, but
you can enable or disable them.

Predefined filters do not cover all possible cases. Remember that you can easily create your own filters – even
by using leaks already displayed in the Report panel. Just select the desired leak and choose Filter Item from the
context menu. This will call the Create Filter Item Dialog with fields filled-in for the selected leak. Press OK to
create the new filter.

Detailed information about known VCL leaks is available at www.automatedqa.com/support/leaks.asp.

Leak Resources Restriction
When you profile a Delphi, C++Builder or VC++ application, you may note that sometimes AQtime reports that
certain resources have not been released by the application, when they actually have been released.

It is possible of course that AQtime should simply be misbehaving. But in our experience, this is always instead
due to the order DLLs in which were loaded and unloaded. The Memory and API Resource Check profiler uses a
special DLL (APITraceHook) to record allocations and de-allocations, and this DLL must be loaded by the process
being profiled. It is not impossible for a DLL to load after APITraceHook, allocate something, then only de-allocate
and unload once APITraceHook itself has unloaded. The reverse can also occur, giving rise to a spurious report that
the application attempted to de-allocate a resource it had not allocated.

For instance, in VC++ applications WinMain loads and unloads all DLLs, including APITraceHook. This gives
rise to a minimum of three "unreleased resources".

You can solve the problem as it occurs in your own environment by creating a Leak Filter for the pseudo-leaks
showing in the Report panel. Just select the desired leak and choose Filter Item from the context menu. This will
call the Create Filter Item Dialog with fields filled-in for the selected leak. Press OK to create the new filter.

Leak filters can be used along with ordinary filters, but they work the opposite way. If a record matches an
ordinary filter, it is kept in the Report panel. If a record matches one of the enabled Leak Filters, it is excluded from
the Report panel.

http://www.automatedqa.com/support/leaks.asp

Profilers Reference

http://www.automatedqa.com AQtime by AutomatedQA Corp.

138

Non-Existent Resources in the Report panel
The Memory and API Resource Check profiler reports whether the profiled application tried to release a non-
existent resource. This can occur, for instance, if the application calls a memory-release function on an invalid
pointer.

However, sometimes AQtime may report that there was an attempt to free a non-allocated resource while this
resource actually is allocated. Typically, this happens because you do not profile all DLLs used by the application.
For instance, an unprofiled DLL allocates a resource and passes it to the application, which is responsible for
releasing it – the release call will appear to apply to a non-existent resource.

To solve the problem, either add all necessary DLLs to the Setup panel or add them to the Modules page of the
Settings dialog. Note that there is no need to add packages for VCL applications – Memory and API Resource
Check does not use them in analysis.

An alternative explanation is found in Leaked Resources Restriction, but it is less likely.

List of Checked Functions
All the checked functions are divided into six groups in accordance with the DLL a function is exported from:

• COM functions

• GDI functions

• Kernel functions

• Print Spooler functions

• Registry functions

• System memory management functions

COM functions (ole32.dll and oleaut.32.dll)

CoInitialize CoInitializeEx
CoTaskMemAlloc CoTaskMemFree
CoTaskMemRealloc CoUninitialize
OleInitialize OleUninitialize
SysAllocString SysAllocStringByteLen
SysAllocStringLen SysFreeString
SysReAllocString SysReAllocStringLen
VariantClear

GDI functions (gdi32.dll and user32.dll)

CallWindowProcA CallWindowProcW
CloseEnhMetaFile CloseMetaFile
CloseWindowStation CopyCursor
CopyEnhMetaFileA CopyEnhMetaFileW
CopyIcon CopyImage
CopyMetaFileA CopyMetaFileW

Memory and API Resource Check Profiler

Copyright © 1999-2001 AutomatedQA Corp. support@automatedqa.com

139

CreateAcceleratorTableA CreateAcceleratorTableW
CreateBitmap CreateBitmapIndirect
CreateBrushIndirect CreateColorSpaceA
CreateColorSpaceW CreateCompatibleBitmap
CreateCompatibleDC CreateCursor
CreateDCA CreateDCW
CreateDialogIndirectParamA CreateDialogIndirectParamW
CreateDialogParamA CreateDialogParamW
CreateDIBitmap CreateDIBPatternBrush
CreateDIBPatternBrushPt CreateDIBSection
CreateDiscardableBitmap CreateEllipticRgn
CreateEllipticRgnIndirect CreateEnhMetaFileA
CreateEnhMetaFileW CreateFontA
CreateFontIndirectA CreateFontIndirectW
CreateFontW CreateHalftonePalette
CreateHatchBrush CreateICA
CreateIcon CreateIconFromResource
CreateIconFromResourceEx CreateIconIndirect
CreateICW CreateMDIWindowA
CreateMDIWindowW CreateMenu
CreateMetaFileA CreateMetaFileW
CreatePalette CreatePatternBrush
CreatePen CreatePenIndirect
CreatePolygonRgn CreatePolyPolygonRgnstdcall
CreatePopupMenu CreateRectRgn
CreateRectRgnIndirect CreateRoundRectRgn
CreateSolidBrush CreateWindowA
CreateWindowExA CreateWindowExW
CreateWindowStationA CreateWindowStationW
CreateWindowW DefFrameProcA
DefFrameProcW DefMDIChildProcA
DefMDIChildProcW DefWindowProcA
DefWindowProcW DeleteColorSpace
DeleteDC DeleteEnhMetaFile
DeleteMetaFile DeleteObject
DestroyAcceleratorTable DestroyCursor
DestroyIcon DestroyMenu

Profilers Reference

http://www.automatedqa.com AQtime by AutomatedQA Corp.

140

DestroyWindow DuplicateIcon
ExtCreatePen ExtCreateRegion
ExtractAssociatedIconA ExtractAssociatedIconW
ExtractIconA ExtractIconW
GetClassInfoA GetClassInfoExA
GetClassInfoExW GetClassInfoW
GetDC GetDCEx
GetEnhMetaFileA GetEnhMetaFileW
GetIconInfo GetMetaFileA
GetMetaFileW GetStockObject
GetWindowDC InsertMenuA
InsertMenuItemA InsertMenuItemW
InsertMenuW KillTimer
LoadBitmapA LoadBitmapW
LoadCursorA LoadCursorFromFileA
LoadCursorFromFileW LoadCursorW
LoadIconA LoadIconW
LoadImageA LoadImageW
LoadKeyboardLayoutA LoadKeyboardLayoutW
LoadMenuA LoadMenuIndirectA
LoadMenuIndirectW LoadMenuW
OpenWindowStationA OpenWindowStationW
RegisterClassA RegisterClassExA
RegisterClassExW RegisterClassW
ReleaseDC ReleaseStgMedium
SetClipboardData SetEnhMetaFileBits
SetMetaFileBitsEx SetTimer
SetWindowRgn SetWinMetaFileBits
SHFileOperationA SHFileOperationW
SHFreeNameMappings UnloadKeyboardLayout

Kernel functions (kernel32.dll)

_lclose _lcreat
_lopen BeginUpdateResourceA
BeginUpdateResourceW CloseEventLog
CloseHandle CreateConsoleScreenBuffer
CreateEventA CreateEventW

Memory and API Resource Check Profiler

Copyright © 1999-2001 AutomatedQA Corp. support@automatedqa.com

141

CreateFiber CreateFileA
CreateFileMappingA CreateFileMappingW
CreateFileW CreateMailslotA
CreateMailslotW CreateMutexA
CreateMutexW CreateNamedPipeA
CreateNamedPipeW CreatePipe
CreateProcessA CreateProcessW
CreateRemoteThread CreateSemaphoreA
CreateSemaphoreW CreateThread
DeleteCriticalSection DeleteFiber
DeregisterEventSource DuplicateHandle
EndUpdateResourceA EndUpdateResourceW
EnterCriticalSection FindClose
FindCloseChangeNotification FindFirstChangeNotificationA
FindFirstChangeNotificationW FindFirstFileA
FindFirstFileW GetStdHandle
InitializeCriticalSection LeaveCriticalSection
MapViewOfFile MapViewOfFileEx
OpenBackupEventLogA OpenBackupEventLogW
OpenEventA OpenEventLogA
OpenEventLogW OpenEventW
OpenFile OpenFileMappingA
OpenFileMappingW OpenMutexA
OpenMutexW OpenProcess
OpenSemaphoreA OpenSemaphoreW
RegisterEventSourceA RegisterEventSourceW
ReleaseMutex ReleaseSemaphore
TerminateThread TlsAlloc
TlsFree TryEnterCriticalSection
UnmapViewOfFile

Print Spooler functions (printspool.drv)

ClosePrinter OpenPrinterA OpenPrinterW

Registry functions (advapi32.dll)

RegCloseKey RegConnectRegistryA
RegConnectRegistryW RegCreateKeyA

Profilers Reference

http://www.automatedqa.com AQtime by AutomatedQA Corp.

142

RegCreateKeyExA RegCreateKeyExW
RegCreateKeyW RegOpenKeyA
RegOpenKeyExA RegOpenKeyExW
RegOpenKeyW

System memory management functions

GlobalAlloc GlobalFree
GlobalReAlloc HeapAlloc
HeapCreate HeapDestroy
HeapFree HeapReAlloc
LocalAlloc LocalFree
LocalReAlloc PrintDlgA
PrintDlgW ReleaseStgMedium
SetClipboardData VirtualAlloc
VirtualFree

Profilers How-To

Enabling and Disabling Profiling From Application Code
AQtime is an OLE server which can be controlled from other applications. The entire interface is provided in AQtime.idl,
which is part of the standard installation. AutomatedQA's AQtest makes extensive use of it to integrate AQtime tests and
results. But the simplest use of AQtime as an OLE engine is simply to turn profiling on or off from application code. This has
the same effect as using the Enable Profiling toolbar button. Note however that the OLE commands only work if there is only
one instance of AQtime running.

This is useful wherever Areas plus Triggers do not give you the control you seek, or where they would, but at
the cost of some complications, or simply where you want to set Triggers from source code rather than from the
AQtime user interface.

For C++ or Delphi applications, all the functions you need to do this are provided in a few files that you add to
your source files. Once you have them linked in, turning profiling on and off is a matter of a few simple calls.

For Borland Delphi or C++Builder, the files to add are: AQtimeCOMAPIProvider.pas and AQtime_TLB.pas
from the <AQtime>\PlugIns folder.

For Microsoft Visual C++ applications, the files to add are: AQtimeCOMAPIProvider.h and
AQtimeCOMAPIProvider.cpp, from the <AQtime>\PlugIns\MSVC folder, and AQtime.tlb from the
<AQtime>\PlugIns folder.

The TLB files hold all the interfaces to the OLE server. AQtime_TLB.pas translates the IDL into Object Pascal
declarations, AQtime.tlb tranlates it into a type library format which is not human-readable.
AQtimeCOMAPIProvider contains the few higher-level declarations that you will use to turn profiling on or off
from application code:

Declaration Description
TAQtimeDriver Class implementing methods to connect to AQtime and operate

Profilers How-To

Copyright © 1999-2001 AutomatedQA Corp. support@automatedqa.com

143

with it.
AQtimeDriver Variable of the TAQtimeDriver type. Once created, provides

access to the AQtime interface.
InitializeCommunicationWithAQtime Procedure. Establishes a connection between the AQtime OLE

server and your application. Uses one integer parameter, which it
passes to CoInitializeEx.

FinalizeCommunicationWithAQtime Procedure. Closes the connection between AQtime and your
application.

AQtimeEnableProfiling Function. Enables or disables profiling according to its boolean
parameter.

Call InitializeCommunicationWithAQtime procedure to establish the OLE connection. Once this is done, you
could use the AQtimeDriver variable to control AQtime. But, if all you need is to enable or disable profiling,
calling AQtimeEnableProfiling is simpler. Once your application has no more need for controlling AQtime, call
FinalizeCommunicationWithAQtime to close the connection.

The important thing is to make sure that the connection is established before you call AQtimeEnableProfiling,
and closed only when this will not be called anymore. It is not impossible, though, to open the connection, use it,
close it, then re-open it later and use it again. Using the connection in any way when it is not established, or is
closed leads to access violation.

You can try this first with the sample application, OnOffProfiling, that is part of your AQtime installation (in
source). Or you can try the following sample code in an application of your own.

In either case, before running the test, set up the application in AQtime so that the application has full control
over profiling:

• Select FULL CHECK in the AQtime’s Setup. For more convenient result analysis, you should uncheck all
profiling areas, except FULL CHECK.

• Be sure the Enable/Disable Profiling button is not pressed so AQtime will not profile the application by
itself.

Sample code:
...

// Initializes a connection with AQtime

InitializeCommunicationWithAQtime(0);

// Enables profiling

AQtimeEnableProfiling(True);

// Call the Large_Function

Large_Procedure(Param1, Param2);

// Disables profiling

AQtimeEnableProfiling(False);

// Closes a connection with AQtime

Profilers Reference

http://www.automatedqa.com AQtime by AutomatedQA Corp.

144

FinalizeCommunicationWithAQtime();

...

There is an entire tutorial devoted to this topic: Enable/Disable Profiling From External Application. Be sure to
check it.

Getting Results During Testing
AQtime normally generates results after the profiled application has ended its run. When profiling a dynamic link
library, this means results are generated when the host application exits.

However, you might be profiling an application that never stops until system shut-down (e.g. an NT service or
and IIS application), or you may simply wish to obtain results without closing the running application (e.g. the host
for a dll). You can do this by using Get Results in the Project submenu from the main menu. Results will be
generated as if the profiled application had terminated.

Calculating Percent Time With Children
Function Profiler options include a % with children relative to real time check box which is in the off state by
default. This option affects how % with children is calculated in the Report panel.

In the default state, % with children relative to real time disabled, % Time is the Time value as a percentage of
the total of all Time values (as shown in the footer of the Time column). Likewise % with children is the Time
with children value as a percentage of the total of all values in that column. The total in the footer of % with
children is 100%. For instance --

When % Relative To Real Time is enabled, % with children is the Time with children value as a percentage of
the total of all values in the Time (not with children) column. Normally, this will yield a total in the footer of %
with children much greater than 100%, as child time is being added in more than once. The advantage of the
setting is that % with children tells you what any profiled function costs, child calls included, as a proportion of
the total profiled time. For instance --

Profilers How-To

Copyright © 1999-2001 AutomatedQA Corp. support@automatedqa.com

145

Note that % with children relative to real time is shorthand for "% relative to total time spent profiling". The
time during which profiling is turned off, for instance for System Files, is simply not counted. Using "real time",
that is, total elapsed time, would include all the time spent waiting for the user to do something.

When results are stored, they are stored with the current column contents. % with children will not change
when you retrieve the results, no matter what the current setting for % with children relative to real time. You can
easily see under what setting the results were generated by checking the footer for % with children. If it is 100%,
then the option was off. If it is greater, the option was on.

Optimizing the Profiling Process
Below you’ll find some tips for getting the most out of a profile cycle in AQtime, with the least wasted effort:

• When you profile a project for the first time, use the Sampling or HitCount profilers as a preliminary tool to
narrow down the problem sections of the application. Next, apply the Function Profiler to optimize these
areas or individual functions.

• Even a small, quick function can impair performance if it is called very frequently. Always check the Hit
Count for anomalies. Are there errant hit counts, for instance where a very common piece of code makes a
needless call? If they are not errant, can the very high hit counts be decreased by tuning your algorithms?

• Do not assume you know a function is "no problem". The profilers are there to give you a health report; use
them. Known problems may have unexpected roots.

• Restrict you profiling Areas when you can. The profilers need time to gather information about the sections
they are set to analyze (Areas). And they may take more time while profiling the actual execution. The more
precise you Area specification, the faster the profiling. Remember that an application includes much code
that will never need profiling. For instance, user interface code normally does little but wait on the user. See
Excluding Code from Profiling and Selecting Code To Profile.

• Long functions can be difficult to profile. One way around this is to break them down into several
subfunctions for profiling purposes. (You will probably find that the code is also clearer once broken down,
and easier to analyze.)

Profilers Reference

http://www.automatedqa.com AQtime by AutomatedQA Corp.

146

• No real-world execution of an application is identical to another. From one run to the next, you should expect
some inconsistency in results. For instance, AQtime tracks time by the high-resolution CPU clock. This
includes time spent outside the application (including Windows background processes), which changes with
each test. The prudent thing to do is to average several runs. See Merging Results. Where you need high-
precision results, keep a very detailed record of how the test was run.

• To help achieve consistent test results, reduce the number of processes running on your machine during
profiling.

• The VCL Class, VCL Reference Count, ATL Reference Count and Memory and API Resource Check
profilers track where memory leaks are created. This requires much processing by AQtime, and will slow
down your application. If you don't need the leaks traced in a given run, turn off the Show call stack option
of the profilers. See Profilers Options - VCL Profilers, Profiler Options – ATL RefCount and Profiler
Options - Memory and API Resource Check Profiler. In the case of the latter, there is also a Stack depth
shown option for further control (the less the depth, the less time spent).

• Also, when these three profilers track leaks, by default they track all functions calls, even those for which
there is no source. It is useful to know that there are leaks in code you do not have the source for, but most of
the time it is your own code that you wish to work on. In this case, turn off the Show all parents. Turning this
off will let AQtime collect less information, and profiling speed will increase. See VCL Profiler Options and
Profiler Memory and API Resource Check Profiler Options.

• The Memory and API Resource Check profiler divides API functions onto several groups: COM, Kernel,
GDI, etc. This allows you to improve profiling speed (and simplify results) by unchecking unnecessary
function groups in the Settings dialog. This dialog appears by default when the profiler is launched. You can
also use it to uncheck unnecessary modules. Finally, if you are interested only in leaked resources and
memory blocks, you can turn off the Show API parameters option, so that the profiler will not track
parameters and results on each call.

Profiling Recursive Functions
We will call recursive any function that calls itself, or that is eventually called by some child function it called. In
AQtime terms, a recursive function is one that belongs to its own descendance (children, grandchildren, etc.). For
the Function Profiler, this poses an unavoidable problem concerning what AQtime should call Time With Children
and what it should call Time (i.e., without children) for such a function.

This topic explains the Time With Children problem for recursive functions, and the solution adopted in the
Function Profiler.

Remember first that Time and Time With Children apply not to one call, but to the sum of calls throughout the
profile run. Now, imagine that one function, FuncA, calls itself three times in a row, so that the original call,
FuncA1, gives rise to three more, FuncA2, FuncA3 and FuncA4. Imagine also that FuncA takes 2 seconds to
execute its own code. If these are the only calls during the profile run, Time should be 8 seconds. But Time With
Children?

FuncA4 = 2
FuncA3 = 4
FuncA2 = 6
FuncA1 = 8
Total = 20 seconds.

Now, imagine also that the entire run was simply the original FuncA1 call. The entire run lasted 8 seconds, but
Time With Children for FuncA is 20 seconds. This is grossly misleading. The reason is that one single execution,
FuncA4, is counted separately as part of the child time for FunA3, FuncA2 and FuncA1, and it is also counted once

Profilers How-To

Copyright © 1999-2001 AutomatedQA Corp. support@automatedqa.com

147

as its "own" time – it's counted four times in all. Likewise, FuncA3 is counted three times and FuncA2 is counted
twice. These repeat counts for the same actual execution bloat up Time With Children as soon as there is recursion.

In the very simple example above, we also know what solution we'd like – Time With Children should be
identical with run time, 8 seconds. That is, the same as Time itself, since both values count exactly the same calls
(FuncA1 through FuncA4).

The way this is done in the Function Profiler is simply that any call that is (even remotely) part of a call to
the same function is not profiled. On any call, AQtime first checks whether it is already counting execution time
for the same function in the current thread and, if this is the case, simply does not add anything to Time or Time
With Children for the coming call. Child calls to other functions are profiled, though.

With our simple FuncA example, this means FuncA2, FuncA3 and FuncA4 contribute nothing to Time With
Children, so it remains what it was for FuncA1 alone, 8 seconds, the same as the run time. This is what we wanted.

However, Time only counts FuncA1, 2 sec., dismissing the three recursive calls. This isn't what we would want.
The problem is that the actual time information gathered by the profiler is Time With Children. Time is simply the
difference between this and the Time With Children of each immediate child call. In other words, if Time With
Children is counted as 0, then Time will be 0 also. The alternative would add code to the profiler that would be
executed on each function call, recursive or not, thus slowing the entire profile run, while in most cases there is no
recursion to account for anyway.

Not profiling the recursive calls is inexpensive, but it implies the compromise we've just seen. Time only counts
the first, non-recursive call. To warn you about this, there is an Track recursion depth option for the Function
Profiler. If this is enabled, the Report and Call Graph panels have an extra column showing the maximum recursion
depth found during the run for each function.

As this is useful information, the option is also available for the Function HitCount profiler, which has no
problem with recursion (all hits are counted). See Function Profiler Options and Function HitCount Options.

Just to make sure everything is clear, here is a somewhat more complex example:

Profilers Reference

http://www.automatedqa.com AQtime by AutomatedQA Corp.

148

The timings are time spent executing the function itself.

If the Function Profiler timed both the first and the second call to FuncA, we would get the following results:

Name Time Time with Children
FuncA 18 42
FuncB 5 22
FuncC 7 17
FuncD 2 2

Time With Children for the second call is counted twice (once as part of the first call, and once as a second call),
so we get a total of 42 seconds for a run time of 32 seconds. What the Function Profiler will actually give you is
this, rather:

Name Time Time with Children
FuncA 10 32
FuncB 5 22
FuncC 15 17
FuncD 2 2

Profilers How-To

Copyright © 1999-2001 AutomatedQA Corp. support@automatedqa.com

149

Everything becomes quite obvious in the Details panel. FuncA is in the child list of FuncC, of course. But the
Time and Time with Children columns for FuncA show 0, directly telling you this call was not profiled.

Note that if the first call to FuncA is not profiled for any reason (e.g. it is excluded by an off-trigger), the
Function Profiler detects no recursion.

Overloaded Functions
AQtime profiles overloaded functions in the same manner as non-overloaded ones. As overloaded functions share
the same name, the Report panel displays them using the following convention:

function_name overloaded n ;

The important element here is n, the sequence number of the overloaded function as it appears in source
(earliest-linked file first, earliest line first). This system breaks down if the order of overloaded functions changes in
source. Function n at the time the Areas or Triggers were defined, isn't function n in the current source or exe.

The solution is to remove the functions from Areas or Triggers, then put them back in after the source order has
changed, for instance because you have inserted more overloaded versions.

Profiling Inline Functions
AQtime's function profilers track entry and exit points of a function. When a C++ function is set as inline, the
compiler may insert a copy of the function body in each spot it is called (or it may disregard the directive).
Obviously, with a true inlined function, there are no entry and exit points to track.

So, if you want an inline function profiled, you must set your compiler not to inline it.
Microsoft Visual C++ distinguishes the ways in which an inline function is specified as inline:

1. Using the inline keyword.
2. For a member function, having its body declared in the class definition.

Using #pragma auto_inline to tell the compiler to inline functions according to criteria or its own.
In the corresponding dialog:

Profilers Reference

http://www.automatedqa.com AQtime by AutomatedQA Corp.

150

you have three options:
Disable * Simply inline nothing. This is the simplest for using AQtime.
Only Inline Only member functions implemented in the class definition will be inlined.

All other functions will be accessible to AQtime profilers.
Any Suitable The compiler produces inline code for all functions marked as inline as well

as for any suitable functions defined under #pragma auto_line. This is the
setting most likely to cause problems.

In Borland C++Builder things are simpler:

Profilers How-To

Copyright © 1999-2001 AutomatedQA Corp. support@automatedqa.com

151

Disable inline expansions means the compiler produces standard code for all inline functions, so AQtime can
profile inline functions of any kind.

Profiling With Microsoft PDB or DBG Debug Info
Microsoft Visual C++ and Microsoft Visual Basic can generate debug info in several forms. The debug information
can be included in the executable, or it can be put in a separate file, in the latter case using either PDB or DBG
format.

PDB and DBG files are meant to be accessed through a special Microsoft DLL, DbgHelp.dll. It is part of your
AQtime installation, and you will need it to profile VC++ and VB applications that use PDB or DBG files for their
debug info.

Currently AQtime uses DbgHelp.dll v. 5.0.2195.1. There are several Microsoft sources for the dll (perhaps in a
different version):

 - Platform SDK (MSDN CD and web site)
 - Windows 2000 DDK (MSDN CD and web site)
 - Windows 2000 Resource Kits (CD and web site)
 - Windows 2000 operating system CDs (\support subfolder)

At the time of writing, you can download the DLL free from the public Microsoft website --
1. Open http://msdn.microsoft.com/downloads/sdks/platform/windbg.asp, and request download of the

Windows 2000 Debuggers Component. This free software contains the necessary DLLs.
2. Select Microsoft 2000 Debuggers (x86) for Windows 9x & NT in the combo box and then download

this software.

Profilers Reference

http://www.automatedqa.com AQtime by AutomatedQA Corp.

152

3. When downloading is over, install the software and copy DbgHelp.dll into AQtime’s folder. After that
you can remove Windows 2000 Debuggers Component from your hard-drive.

Profiling Multithreaded Applications
Multithreaded application profiling is supported by the Function Profiler, Line HitCount, Function HitCount, Line
Coverage, Line Coverage (Grouped by File) and Function Coverage profilers.

This is quite transparent. Each of these profilers logs and saves results by thread. If the profile run included
more than one thread, you can select a single thread to show on the Report pane from the Threads dropdown list on
the Standard toolbar (next to the View dropdown) or you an select a thread in the Explorer panel. Of course, you
can display all threads together:

Function Coverage, Function HitCount and Function Profiler also can be controlled by Triggers, which turn
profiling on or off for the particular thread a function (the Trigger) runs in. This is an essential tool to winnow out
profile information from complex multithreaded applications.

Note that a thread is not a process. If a profiled application launches a new process, this will simply escape
profiling by AQtime, which can only watch over the child process it has launched itself, that is, the main
application process. For instance, to profile an ActiveX control (OLE server) when it is not an in-process server,
you must load it in AQtime as the main process, as explained in Profiling ActiveX Controls and OLE Servers.

An important convenience is that you can assign readable names to threads. The thread names will be displayed
in the Description column of the Explorer panel and in the Threads dropdown list on the Standard toolbar.

This is done by calling calling AQTimeSetThreadName from your application source code. It takes two
parameters: The first (integer) specifies the thread id, the second (string) specifies the name for the thread.
For C++ and Delphi, follow these steps:

• Open your application's project in your development tool.

• Add the AQtimeCOMAPIProvider file to your project. This file is located in the following folder:
For C++ - <AQtime>\Plugins\MSVC

Profilers How-To

Copyright © 1999-2001 AutomatedQA Corp. support@automatedqa.com

153

For Delphi - <AQtime>\Plugins
It holds AQTimeSetThreadName and other routines used to communicate with AQtime.

• In your code, first set up the connection to AQtest by calling
InitializeCommunicationWithAQTime with the appropriate COINIT flag, e.g.
COINIT_MULTITHREADED. (This routine is declared in AQtimeCOMAPIProvider).

• Then call AQTimeSetThreadName(ThreadID, Name).

• To get the id of the current thread, you can use the GetCurrentThreadID routine (Windows API). Note
for Delphi and C++Builder users: If your thread is based on the TThread object, use its ThreadID property
(but not Handle) to obtain the id.

• Close the connection by calling FinalizeCommunicationWithAQTime.

For Visual Basic the steps to follow are:

• Open your application in Visual Basic.

• Add the following lines to initialize a connection to AQtime:
Dim AQtime As Variant

. . .

Set AQtime = GetObject(, "AQTime.AQTimeManager")

• To assign a name to a thread, you will first need its ID. The following code calls GetCurrentThreadID (Win
API) to get the current thread and assign it a name:
If Not AQtime Is Nothing Then

AQtime.Manager.Project.SetThreadName GetCurrentThreadID, "MyThread"

End If

• Call Set AQtime = Nothing to close the connection when you are done.

Profiling Dynamic Link Libraries
You can profile both statically and dynamically linked DLL using AQtime. Profiling a dynamic link library is
similar to profiling any standard application. You should perform the following steps:

• Compile your DLL with debug information. Preparing a Project for Profiling explains how to do this.

• Load the DLL in AQtime as a project.

• Open the Run Parameters dialog and specify the host application for a dynamic link library. When you start
profiling, AQtime launches the specified host application. The host application, in turn, calls functions
defined in the profiled dynamic link library. Note that AQtime does not profile the host application, so it can
be compiled without the debug info.

• Continue profiling in the usual manner. AQtime profiles DLL functions only when they are included in one
of the profiling areas or with active FULL CHECK.

In case the host application is already loaded into AQtime as a project, you may add the DLL as a module:
Choose Add Module… from the Setup toolbar or from the context menu, and then select the desired DLL
using the standard Open File dialog.

Profilers Reference

http://www.automatedqa.com AQtime by AutomatedQA Corp.

154

Profiling ActiveX Controls, OLE Servers and DCOM Servers
AQtime distinguishes two types of OLE servers or ActiveX controls: In-process OLE servers (i.e., ActiveX
controls) and OLE servers that are executed as a separate process (i.e. out-of-process servers). The two different
types of OLE servers are profiled in different ways.
To profile an ActiveX control or in-process OLE server:

• Compile your ActiveX control with debug information. Preparing a Project for Profiling explains how to do
this.

• Be sure the “debug” version of your control is registered in the system. If the control was compiled on your
machine, it was registered during compilation. In any case, you can use the regsvr32 utility from the
<Windows>\System folder to register the control.

• Add the .OCX (or .DLL) module, which includes the ActiveX control to the project being profiled: Select
 Add module… from the Setup toolbar or context menu).

• Then perform profiling in the usual manner. Keep in mind that to profile a function (unit, class) you must
check it within a profiling area or select FULL CHECK to profile all. Note that trigger routines are always
profiled.

Out-of-process OLE servers are applications and they are executed in a separate address space. If you need to
profile such programs, you should load them in AQtime as a project, not as an additional module in another project:

• Compile the out-of-process OLE server with debug information. Preparing a Project for Profiling explains
how to do this.

• Open the out-of-process OLE server in AQtime as a project and specify profiling areas (see Selecting Code
to Profile).

• Start profiling. Make sure that the profiled application, that is, the server, can find all additional modules it
requires.

• Launch the OLE client. This is your "user" for the profiled application, the server.

• Work with the OLE client and OLE server application as needed.

• Close the client and server applications. We recommended that you first close the OLE client and then the
OLE server. Since you start the OLE server from AQtime, AQtime always profiles the initialization and
finalization code.

DCOM servers normally simply await a remote procedure call from a client machine. They cannot be launched
by AQtime in this way. On the other hand, if they are launched as specified above for an out-of-process OLE
server, they will execute nothing (no remote procedure call) and exit immediately.

The solution is to add a bit of code to the DCOM server application so that, when launched, it does not close
immediately. This only means –

• adding an empty form (the Close on the caption bar will allow the application to close when you are done);

• setting up code so that on launching the DCOM application opens the form (the exact means depend on your
compiler).

You can then profile by using the rest of the recipe for out-of-process OLE server. Use a client machine to
command operations on the DCOM server. When you close the form on the server machine, the server process will
exit and AQtime will generate its results.

Profilers How-To

Copyright © 1999-2001 AutomatedQA Corp. support@automatedqa.com

155

Profiling IIS and PWS Applications
Once compiled with debug information, IIS (Internet Information Server) applications can be profiled by using a
special technique to run them from AQtime. The same technique will allow the profiling of PWS (Personal Web
Server) applications. The technique depends on whether the IIS or PWS version is 3.0 or earlier, or later. Since it is
identical for IIS and PWS applications, we'll use IIS for the explanation.

IIS v . 3.0 or earlier is simple:

• Stop the IIS service from Control Panel | Services.

• Load the IIS application project in AQtime.

• Open the Run Parameters dialog (Project | Parameters… on the main menu) and specify the host
application and command line switches for the IIS application. The host application will be your Internet
information server, normally <Windows>\System32\Inetsrv\inetinfo.exe. The command line parameters must
be: -e w3svc.

• Select your profiler and launch the IIS application from AQtime.

• When your tests are done, use the Get Results button to get profiling results. See Getting Results During
Testing.

IIS v. 4.0 or later is less simple. It requires running the IIS application in debugging mode:

• Stop the IIS service from Control Panel | Services.

• Use DCOMCnfg to set the identity of the IIS Admin Service to your user account.

• Use RegEdit or some other Registry editor to make a number of modifications to the Registry. The
modifications will be listed below. You should first save to .reg files the subkeys that will be modified so as
to make restoration easier. As you modify each subkey, you may save it again (to a different folder, for
simplicity) so that you also have pre-defined settings you can load when next you want to profile an IIS
application. But you cannot save the two main keys involved as two .reg files. Too many other settings are in
those branches, and they can change at any time.

• In the properties dialog of Internet Information Server set the Application Protection option for your ISAPI
dll to the value Low (IIS Process). This will cause the dll to run in the address space of the Internet
Information Server so AQtime will be able to profile it. Otherwise, the dll will be run as a separate process.

• Load the IIS application project in AQtime.

• Open the Run Parameters dialog (Project | Parameters… on the main menu) and specify the host
application and command line switches for the IIS application. The host application will be your Internet
information server, normally <Windows>\System32\Inetsrv\inetinfo.exe. The command line parameters must
be: -e w3svc.

• Select your profiler and launch the IIS application from AQtime.

• When your tests are done, use the Get Results button to get profiling results. See Getting Results During
Testing.

• Once you have generated results, make sure you restore IIS Admin Service to its original account, and that
you restore all the Registry subkeys you modified.

Registry modifications for IIS 4.0 or later:

Profilers Reference

http://www.automatedqa.com AQtime by AutomatedQA Corp.

156

• There are several subkeys under HKEY_CLASSES_ROOT/AppID, repeated under
HKEY_CLASSES_ROOT/CLSID, that include a LocalService value (keyword). The three following are
related to IISADMIN:

{A9E69610-B80D-11D0-B9B9-00A0C922E750} // IISADMIN Service

{9F0BD3A0-EC01-11D0-A6A0-00A0C922E752} // IIS Admin Crypto Extension

{61738644-F196-11D0-9953-00C04FD919C1} // IIS WAMREG admin Service

• From the first two, remove both the LocalService value and the RunAs value.

• From the third, remove the LocalService value, then add a RunAs value and set it to Interactive User.

• For these three subkeys and any other under CLSID that has a LocalService value, add a sub-subkey (that is,
a new subkey under the existing one, not a value) called LocalService32. In each case, set Default for these
new subkeys to the full-path name of your IIS server, plus parameter -e w3svc. For instance --

c:\\winnt\\system32\\inetsrv\\inetinfo.exe -e w3svc

• Finally, for the following subkeys, set the Start value (keyword) to data contents dword:3 --
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\IISADMIN

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\W3SVC
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\MSDTC

Profiling Services
Windows NT and Windows 2000 support an application type called a service application. You can profile such
applications with AQtime:

1. As always, compile the service application with debugger information. (See Preparing a Project for AQtime.)

2. Open an AQtime project for the service application.

3. Launch the service application from its AQtime project.
4. Wait for the service application to be instrumented by AQtime. It will appear as a process in the Task

Manager, but will not actually be launched as a process until it has been instrumented.
5. Then, within 10-20 seconds, launch the service again from the Control Panel (Start | Settings | Control Panel

| Services). At this moment, the Task Manager will display two service processes. A bit later the process
launched under AQtime will become a service (normally with an onscreen message). The process launched
from the SCM will not start as a service (normally generating no error message).
What is happening here is that through the SCM you are notifying Windows that your application is to be
launched as a service, but you are also coming in under the wire and getting the previous AQtime launch
accepted as the actual service process, rather than the launch the SCM will undertake itself.
When your AQtime-instrumented process is registered as the service process, the later launch from the SCM
becomes moot, and that second process is abandoned. If too much time elapses between the actual AQtime
process launch and the SCM notification, then the AQtime-instrumented process will time out and terminate
silently, and the SCM launch will work in the normal way.
If you have trouble because you are calling the SCM while AQtime is still instrumenting your application, you
can try a longer wait (say 40-60 seconds), or you can make instrumentation go quicker by decreasing the
number of functions to be profiled, that is, the extent of the profiled Areas. (See Defining Areas To Profile).

6. Once the profiled application is registered as a service, test it according to your plans.
7. When your tests are done, stop the profiled service from the Service Control Manager dialog. The service

application will be closed and AQtime will generate the profiling results. Or you may prefer to use Project |

Profiler Options

Copyright © 1999-2001 AutomatedQA Corp. support@automatedqa.com

157

Get Results… from the main menu to generate results without closing the process. (See Getting Results
During Testing.)

Note that service applications are often OLE servers. It may be easier simply to profile these as OLE servers.
See Profiling ActiveX Controls and OLE Servers.

Profiler Options

Almost all AQtime profilers have options. These are set from one central dialog, the Profiler Options Dialog, with
is brought up from the main menu by selecting Options | Profiler Options…:

The dialog is in two parts -
On the left is the profiler selector, or the right the options dialog for that profiler. The profiler is the same one

you from the dropdown list on the standard toolbar. It is organized as a tree view, with the
main branches for the various profiler classes, and the leaves for the actual profilers. To see and select a profiler,
you must first open its branch by clicking on the + symbol to the right. Using the navigation sidebar, select the
profiler whose options you wish to change.

On the right is the list of options for the selected profilers. When you have made the modifications you wanted,
press OK to apply the changes. If you only wanted to check the existing options, press Cancel to exit.

Coverage Profiler Options
The Function Coverage, Line Coverage (gouped by function) and Line Coverage (grouped by file) profilers provide
a single option - Warning level. This option operates during the preliminary (instrumentation) phase of each profile
run. It sets a number of functions or lines currently selected for profiling, beyond which a dialog box will ask you
whether you wish to continue the run as specified, or to exit immediately. This is to allow you an early exit from an
over-ambitious Areas specification which, might lead to sluggish execution, as masses of needless functions or
lines are logged by the profiler. The valid range for Warning level is between 0 (never warn) and 1,000,000.

Function Profiler Options
• Show non-hit functions – Enables or disables the display, in the Report panel, of routines that have not been

executed in the current profile run.

• Warning level – This option operates during the preliminary (instrumentation) phase of each profile run. It
sets a number of functions currently selected for profiling, beyond which a dialog box will ask you whether
you wish to continue the run as specified, or to exit immediately. This is to allow you an early exit from an
over-ambitious Areas specification, which might lead to sluggish execution, as masses of needless functions
are logged by the profiler. The valid range for Warning level is between 0 (never warn) and 1,000,000.

• % with children relative to real time – If this is enabled, % With Children will be figured relative to the
total Time (without children). Else, relative to the total Time. See Calculating Percents In the Report panel.
This option has no effect on results already calculated and displayed.

• Include body time in Details – Sets whether results for each function's own-code ("body") time will be
listed along with the child-call results in the Details panel.

• Smallest percent identified – For each child function of any parent function, sets the minimum proportion
of the time spent by the parent (child calls included) that the child must have occupied, to be listed separately
in the children pane of the Details panel.

• Sort functions in Call Graph by – Column on which functions will be sorted in the Call Graph panel. The
functions are sorted in the descending order for the values in this column.

Profilers Reference

http://www.automatedqa.com AQtime by AutomatedQA Corp.

158

• Track recursion depth - Sets whether recursion data will be tracked so that the maximum recursion depth
reached for each function can be shown in the Max Recursion Depth column of the Report panel.

• Calibration – Settings for the timing loop run at the beginning of each Function Profiler run. This estimates
the profiling overhead time that must be subtracted to figure reported times.
- Loop Count – Number of loops to use for calibration 1 to 100,000, default 1000. More loops may

improve calibration, at the cost of startup time.
- Tolerance – Variation between calibration loops above which the calibration cycle will be rerun. 0% to

99%, default 15%. Lower values may improve reliability, at the cost of startup time. Values from 10 to 20
tend to give the best results.

• Display in Editor gutter – Selects results to display in the gutter of the Editor panel, at the beginning of the
implementation code of each function. Choices: HitCount, Total Time With Children, % Time With
Children, Total Time, % Time.

• Display in Call Graph - Selects results to display in the function rectangles of the Call Graph panel. Any
combination of the following can be displayed: Time, Time with Children, Average Time, Max Time,
Min Time, Exceptions, Max Recursion Depth.

Function HitCount Options
• Warning level – This option operates during the preliminary (instrumentation) phase of each profile run. It

sets a number of functions currently selected for profiling, beyond which a dialog box will ask you whether
you wish to continue the run as specified, or to exit immediately. This is to allow you an early exit from an
over-ambitious Areas specification, which might lead to sluggish execution, as masses of needless functions
are logged by the profiler. The valid range for Warning level is between 0 (never warn) and 1,000,000.

• Track recursion depth - Sets whether recursion data will be tracked so that the maximum recursion depth
reached for each function can be shown in the Max Recursion Depth column of the Report panel.

• Call relationship tracking – Settings for the added information displayed by the Details panel.
- Enable - Sets whether parent-child information will be logged and accumulated for each call, to be

displayed (by parent and by child, for each function) in the Details and Call Graph panels.
- Smallest percent identified - Sets the minimum call frequency, for each function, needed for a parent or

child to appear as a separate line in the Details panel. This is relative to all parents or all children of the
function for which details are being displayed.

• Display in Call Graph – Selects results to display in the function rectangles of the Call Graph panel.
Available: Hit count, Max recursion depth.

Line HitCount Profiler Options
• Warning level – This option operates during the preliminary (instrumentation) phase of each profile run. It

sets a number of lines currently selected for profiling, beyond which a dialog box will ask you whether you
wish to continue the run as specified, or to exit immediately. This is to allow you an early exit from an over-
ambitious Areas specification, which might lead to sluggish execution, as masses of needless lines are logged
by the profiler. The valid range for Warning level is between 0 (never warn) and 1,000,000.

• Max HitCount - Sets the number of hits for a single line after which its hits will not be recorded anymore
(thus saving time). 0 to 1,000,000. 0 = count always.

Profiler Options

Copyright © 1999-2001 AutomatedQA Corp. support@automatedqa.com

159

Sampling Profiler Options
• Calibration Loop Count – Number of loops to use during startup to figure the conversion ratio from sample

counts to real time. 100 to 10,000,000, default 1000. More loops may improve calibration, at the cost of
startup time.

• Sampling interval (clock ticks) – Approximate ticks between samples. Higher values will give invalid
results for quick, infrequent functions (wide-mesh net effect). Depending on the system, lower values can
lead to skipped samplings (the system may be busy elsewhere). 10 to 100,000.

• Shift size - Number of trailing bits to remove from code addresses before matching them to a function. High
values will miss small functions but save memory when profiling large binary areas. 2 to 10 bits. The Shift
size sets the grain size for identifying code addresses. For instance, Shift size 4 means that the currently
executing address at sample time is rounded down to the closest 16-byte-even address. The function or line
attribution is for this rounded-down address. Anything occurring in the next 15 bytes is treated as belonging
to that function or line. Thus, allowed values go from four bytes (2) to a kilobyte (10). 2 is the general
recommendation, but the Sampling interval must also be narrow enough. Larger Sampling Intervals make
low Shift Sizes statistically useless.

• Gutter information - Sets whether the gutter in the Editor panel will show the sample count or the time
count at the beginning of each function or line.

Function Trace Profiler Options
• Warning level – This option operates during the preliminary (instrumentation) phase of each profile run. It

sets a number of functions currently selected for profiling, beyond which a dialog box will ask you whether
you wish to continue the run as specified, or to exit immediately. This is to allow you an early exit from an
over-ambitious Areas specification, which might lead to sluggish execution, as masses of needless functions
are traced by the profiler. The valid range for Warning level is between 0 (never warn) and 100,000.

• Max HitCount - Sets the number of hits for a single function after which its hits will not be recorded
anymore (thus saving time). 0 to 100,000. 0 = count always.

• Trace with parameters – Sets whether parameter values for calls will be recorded and shown. (On a method
call, the first parameter will be the instance address).

• Show call number - Sets whether each call of a function will be counted and the current count shown.

• Hierarchy display location – Selects where the call hierarchy will be displayed onscreen during the run, and
whether it will also go on file. Press the ellipsis button and select any combination of the following:

- External Console - Displays either in CodeSite window or in Overseer window.
- File - Logs all calls to the file specified by the Log file name option.
- Event View panel - Logs calls to the Event View panel.

• Log file name – Name (path optional) of text file to which to write the entire series of calls logged.

VCL Profiler Optoins
• Classes - By default, the VCL Reference Count profiler works with descendants of the TInterfacedObject

class only. It monitors calls to the AddRef and Release implementation methods of this class. The Classes
option allows you to include independent base classes; each must implement IUnknown. See also Base
Classes Dialog in on-line help.

• Stack

Profilers Reference

http://www.automatedqa.com AQtime by AutomatedQA Corp.

160

- Show call stack - Sets whether the call stack contents will be shown in the Details panel for leaked calls.
For the VCL Class profiler, a leaked call is a Create call for which there was no matching Free. For the
VCL Reference Count profiler, a leaked call is an _AddRef call for which there was no matching
_Release. Call Stack tracing can significantly slow down the profiled application. If you are only
interested in class or interface usage (how many classes have been created, etc.), you can disable it.

- Show all parents - If the call stack is shown, sets whether it will include callers for which there is no
debug info.

- Depth shown – If the call stack is traced (see Show call stack), this option specifies the number of traced
procedures in the stack. The less the depth, the faster the speed is. The default value is 20. 40 is the
maximum value. 0 means no tracing.

- Rely on stack frames – This option indicates that the profiled application has been compiled with stack
frames. In this case, AQtime uses stack frames to track the hierarchy of function calls. Else it must resort
to a slower and perhaps less accurate algorithm.

• Max leak count – Sets the number of leaks for a single class or interface to be reported in the Instances pane
of the Details panel (saving time by not repeating unneeded detail). This has no effect on the simple counts
shown in the Report panel. 0 to 100000. 0 = always record.

Platform Compliance Options
• Customize settings before profiling – Sets whether to display the Platform Compliance Settings dialog at

the start of each run.

• Compliance level - Sets what type of API call to check for. See Platform Compliance Analysis.

Unused VCL Units Profiler Options
• Ignore units with names containing – Specifies the string used to exclude units from analysis. If a unit

name includes a string specified by this option, the profiler regards this unit as used. You can indicate several
strings here. Use commas to separate them. The default string for the option is ‘const,type,messages,comstr’,
that is the Unused VCL Units profiler ignores all units whose names include either a ‘const’, ‘type’,
‘messages’ or a ‘comstr’ string. An alternative to this option is using the IgnoredUnits.txt file (See the
Unused VCL Units Profiler - Principles of Operation).

• Initialization lines discarded – This option is effective only for user-defined units. It specifies the available
number of lines in the initialization section of a unit. If the number of lines in the initialization section is less
than this number, the unit is considered unused.

• Initialization bytes discarded - This option is effective only for user-defined units. It specifies the available
size of the initialization section (in bytes). If the size of the initialization section is less than this number, the
unit is considered unused.

• Delphi version – Specifies the Delphi version used to compile an application. Possible values include 3, 4
and 5.

• Show error if source not found – Specifies whether the profiler displays Path Info Dialog when it cannot
find source files for certain units. In most cases, the profiler reports that the application includes some VCL
units that are not used in other VCL units. If you are not interested in messages about such errors, you can
turn off the Show error if source not found option and tune the Search Directories to your project only. In this
case, the profiler will report only about unused units in your units.

Profiler Options

Copyright © 1999-2001 AutomatedQA Corp. support@automatedqa.com

161

ATL RefCount Profiler Options
• Show call stack - Sets whether the call stack will be recorded at runtime for calls to AddRef or Release. If

this is enabled, the call stack will be available in the Details panel for all calls involving a reference leak. The
cost is that recording the call stack may slow execution. If you only need class usage statistics, rather than to
debug leaks, then you may disable this option.

• Show all parents - This option has no effect unless Show call stack is enabled. Then, if Show all parents is
enabled, all callers will be included in the Call Stack pane of the Details panel. Else, callers for which there is
no debug info will be omitted, making the list more compact.

BDE SQL Profiler Options
• Show call stack Sets whether the BDE SQL profiler should track the call stack for each SQL call, in order

to display it in Details at the end of profiling. This may slow down the application being profiled.

• Show all parents If Show call stack is enabled, some functions in the call stack may have been compiled
without debug info. If Show all parents, the functions will be have lines in Details, but without specific info.
If not, they will simply be skipped, making the display more compact.

• Rely on stack frames If Show call stack is enabled and the application has been compiled with stack
frames enabled, then this option should be on. If Show call stack is enabled but the application was not so
compiled, the option must be set to off, else errors will occur in the stack tracking, quickly making it useless.
If the option is off, the BDE SQL profiler will use the best algorithm practicable to track the stack correctly,
but errors may still occur. If Show call stack is disabled, this option has no meaning.

Memory and API Resource Check Profiler Options
• Stack

- Show call stack - Sets whether the Details panel will track the hierarchy of function calls at runtime and
display the call stack when reporting. Call stack tracking can slow down the profiled application; you may
disable this option when you are only interested in resource usage. But see Depth shown. Note that if the
call stack is not tracked, some filters may be inoperative. See Leak Filters Dialog and Predefined Filters.

- Show all parents – Sets whether the Call Stack will include callers for which there is no debug info,
rather than skip them.

- Rely on stack frames - This option indicates that the profiled application has been compiled with stack
frames. In this case, AQtime uses stack frames to track the hierarchy of function calls. Else it must resort
to a slower and perhaps less accurate algorithm.

- Depth shown – See Show call stack. If the stack is being tracked, this option sets how deep it will be
tracked, that is how many callers-of-callers will be recorded. The less depth, the more speed. 0 means no
tracking, 40 is the maximum, 20 the default.

- Cache check size - When the profiler unwinds the stack, it keeps the unwound functions for later re-use.
On the next unwinding, it checks a number of function addresses from the top of the stack. If they are the
same as those in the cache, then it assumes the entire cache is still valid. This saves time and resources.
The Stack Cache Check Size is the number of functions that will be checked each time to determine if the
cache is still valid. The range is 0 to 40. 0 means "do not use cache". 40 makes the cache nearly pointless.

• Customize settings before profiling - Sets whether AQtime displays the Settings dialog every time you start
profiling.

• Show allocation parameters – Sets whether the Resource column in the Report panel displays parameter
values used for the function call.

Profilers Reference

http://www.automatedqa.com AQtime by AutomatedQA Corp.

162

• Show API parameters – Sets whether the profiler will record parameters and result values of resource-
related function calls. This will also allow the Report panel to show warnings warnings or errors (see
below). These warnings and errors are defined in the database you can edit using WinAPI Database Editor.

• Show API warnings – If Show API parameters is enabled, this sets whether will be displayed. This
option doesn't affect showing errors.

• Profile memory management routines – If this option is checked, AQtime monitors functions that create,
change and dispose of memory blocks.

• Profile new loaded modules – If this option is checked, AQtime analyzes modules loaded into memory after
the start of profiling. Else, it analyzes only modules selected in the Modules page of the Settings dialog.

• Check memory bounds – If this option is checked, AQtime traces whether the profiled application writes to
memory below or above the allocated bounds of a memory block and whether it releases the allocated
memory correctly. See Checking Bounds of Memory Blocks.

• Ignore system modules – If this option is on, the Memory and API Resource Check profiler does not profile
memory allocations, resources and function calls made within system dlls, i.e. within modules located in the
<Windows>\System32 folder. The Modules page of the Settings dialog does not display system libraries
either except for MFC42D.DLL and VCLxx.BPL.

Profiler Options

Copyright © 1999-2001 AutomatedQA Corp. support@automatedqa.com

163

INDEX
% with children relative to real time 144, 157
3D view ... 86

A

About macros .. 60
Absent module... 68
Activate after loading .. 87
Active .. 84, 85

Auto-merge ... 85
ActiveX controls -- Profiling... 154
Add Trigger dialog .. 74
Adding... 74

Columns to AQtime panels ... 74
Results to source files ... 78
Series to the Graph panel .. 75

Allow zoom... 85
Always set up Compare params .. 85
Analyzing profiler results .. 36
Animated zoom ... 85
AQtest ... 59, 61
AQtime

as an OLE server... 142
Panels.. 19, 20
Profilers... 20

AQtime Overview ... 7
AQtime.idl... 142
AQtime.tlb... 142
AQtime_TLB.pas .. 142
AQtimeCOMAPIProvider... 142

Enable and disable profiling from application code........ 142
AQTimeSetThreadName... 152
Areas ... 21, 30, 31

Excluding areas... 30
Including areas .. 30
Profiling .. 30, 32

Arranging columns and lines
Adding columns to panels... 74
Displaying results in different formats.............................. 74
Formatting columns .. 74
Grouping ... 79, 80
Removing columns from panels 74
Sorting... 81

ATL applications
Compiler Settings - ATL RefCount profiler 123
Preparing for Memory and API Resource Check............ 129

ATL Reference Count profiler 21, 121
Compiler Settings.. 123
Description.. 121
Details panel ... 122
Options.. 161

Auto expand ...83, 85
Auto start application ...86
Auto-merge

Active ..85
Folder name ...85

Auto-select new elements ..88

B

Background color...83, 84, 85, 86, 87
Details panel ..83
Disassembly panel ...84
Explorer panel ...85
Graph panel ...86
PEReader panel ...87
Report panel...87

BDE SQL profiler ..22, 124
Options ..161

Binary instrumentation...21
Borland C++ ..12, 23
Build with run-time packages option129, 133
By Class Name...39, 40
By Source File..39, 40
By Unit Name ..39

C

C++ ..22, 23, 26
Borland C++ ..23
C++Builder ..22
Compiler Settings - ATL RefCount profiler....................123
GCC...26
Profiling VC++ Applications - Memory and API Resource

Check...129
Visual C++...23

C++Builder ..12
Compiler Settings ..22
Compiler Settings – ATL RefCount profiler123

Cache check size ..161
Calculating percent time with children144
Calibration..158

Function Profiler..158
Loop count...159
Loop Count..158
Tolerance ...158

Calibration Loop Count ...159
Call Graph panel ..42

Options ..82
Call relationship tracking ...99, 158

Enable ..158
Smallest percent identified ..158

Call stack..128

INDEX

http://www.automatedqa.com AQtime by AutomatedQA Corp.

164

ATL RefCount profiler ... 123
BDE SQL profiler ... 125
Memory and API Resource Check.......................... 126, 128
VCL Class profiler.. 47, 108
VCL RefCount profiler ... 48, 109

Call stack on exceptions .. 84
Chart.. 58, 59
Chart style ... 83
Check memory bounds.. 135, 162
Checking bounds of memory blocks 134
Checking Elements to Profile.. 32
Checking resources and memory... 125
Child function color .. 83
Child functions .. 32
Classes... 159, 160
Clear on application start... 85
Clipboard -- copying charts to... 58
Code Editor ... 52
CodeSite .. 104, 105
COFF debug format .. 23, 24
Column Selection dialog ... 74
Columns .. 74

Adding and removing ... 74
Format... 74

Common Series Color ... 87
Compare results... 55, 75, 76
Compiler Settings.. 22, 23, 26, 123

ATL RefCount profiler ... 123
Borland C++ ... 23
Borland C++Builder ... 22
Borland Delphi.. 22
GCC .. 26
Microsoft Visual Basic ... 25
Microsoft Visual C++ ... 23

Compiler Settings for Visual Basic
Debug info, generated as an external PDB file 25
Debug info, included into the executable file 25

Compiler Settings for Visual C++
Embedded debug information... 24
Generating debug info as an external DBG file 24
Generating debug info as an external PDB file................. 24

Compilers .. 12
Compliance level... 160
Context menus... 17
Controlling what to profile .. 28
Copying results.. 78
Counter View .. 64
Coverage profilers ... 21

Description.. 91
Options.. 157

Covered -- view... 39
Create Filter Condition Dialog

Memory and API Resource Check page 135
Current - view.. 39
Current View... 40
Customize settings before profiling............................. 160, 161
Cycling trigger option ... 34

D

DBG debug format...23
DBG debug info...151
DBGHELP.DLL ..24
DCOM servers -- Profiling...154
Debug information ...22

Generated as an external PDB file25
Included into the executable file..25
PDB and DBG files ...151
Stab format ..26

Default - view...39
Defective module ...68
Defining areas to profile ..30
Delay between events (ms) ..86
Delphi...12, 22
Delphi 3.0 -- Memory and API Resource Check137
Delphi 4.0 -- Memory and API Resource Check137
Delphi 5.0 -- Memory and API Resource Check137
Delphi version..160
Depth shown ..160, 161
Details panel...43

ATL RefCount profiler ..122
BDE SQL profiler..124
Displaying results as % value or bar graph........................74
Formatting columns...74
Function HitCount ...45
Function Profiler..43
Memory and API Resource Check126
Options ..83
Unused VCL Units ..119
VCL Class Profiler ..47
VCL Reference Count Profiler ..48

Disable/Enable Profiling button...28
Disassembly panel..50

Displaying results as % value or bar graph........................74
Formatting columns...74
Options ..83

Display in Call Graph ..158
Function Profiler..158

Display in Editor gutter..158
Display source code ...83
Displaying parameters of function calls...............................125

Memory and API Resource Check125
Displaying results in different formats...................................74
DLL..153

Profiling...153
Docking..18

Docking Allowed...20
Restore Default Docking ...18

Doing One Profile Run ..35
Duplicated module ...68

E

Editor ...86
Macro Engine option ...86

Editor panel..52

Profiler Options

Copyright © 1999-2001 AutomatedQA Corp. support@automatedqa.com

165

Font ... 84
Options.. 84

Editor Panel
Font ... 84

Elements to Profile -- checking ... 32
Embedded debug information ... 24
Enable/Disable Profiling button .. 28
Enabling and disabling profiling from application code 142
Event View panel .. 53, 117

Options.. 84
value of the Hierarchy display location option 159

Excel.. 78
Exporting resuts to .. 78

Exception Tracer ... 117
Exceptions ... 84

Active.. 84
Find call stack from frames... 85
Hide IsBadPtr exceptions.. 85
in the Event View panel .. 84
Include no-debug in stack ... 85
Max consecutive exceptions ... 84
Show call stack ... 84

Excluding "system" files and functions................................. 29
Explorer panel ... 55

Options.. 85
Exported functions .. 67, 68
Exporting

Charts .. 58
Results... 55, 58, 78

External Console ... 159
Extra memory usage restriction... 133

F

Field Chooser menu option ... 74
File

value of the Hierarchy display location option 159
File extensions for highlighting... 53
Filter Item - Menu item ... 136, 137
Filtering results.. 78

Memory and API Resource Check.................................. 135
Find call stack from frames ... 85
Find Matching Methods .. 105
Finding .. 81, 118

Unused units in your application 118
Values in results.. 81

Fit .. 43
Flat grid ... 83, 84, 87

Report panel.. 87
Folder name... 85
Font ... 84

Disassembly panel .. 84
In Editor panel .. 84

Font color .. 83, 84, 85, 87
Details panel ... 83
Disassembly panel .. 84
Explorer panel... 85
PEReader .. 87

Report panel...87
For All Threads trigger option ...34
Formatting columns ...74
Function Coverage profiler ..21, 91

Description ..91
Options ..157
Results ...91

Function HitCount profiler...96
Description ..96
Details panel ..45
Options ..158

Function Information Panel..68
Function Profiler ..21, 100

Description ..100
Details panel ..43
Options ..157

Function rectangle background
Details part...83
Header part ..83

Function Sampling profiler ..111
Description ..111
Options ..159

Function Trace profiler ..21, 104
Description ..103
Options ..159

Function Trace Profiler ..104

G

GCC ...12, 26
Compiler settings...26

Generating debug info
As an external DBG file ..24
As an external PDB file ...24

Getting results during testing ...144
Getting Started ...20
Getting Support..13
GNU CC ..12, 26
Go to Child Procedure ...43
Go to Current Procedure ..43
Go to Parent Procedure ..43
Gradient ...86

Active ..86
Bottom color ..86
Top color ...86

Graph panel..58
Options ..85
Properties...85
Series ...75

Graph Panel
Series ...75

Graph View..64, 65
Grid settings ...83

Details panel ..83
Disassembly panel ...83

Grouping results...79
Gutter font..84
Gutter information..159

INDEX

http://www.automatedqa.com AQtime by AutomatedQA Corp.

166

Gutter size in pixels... 84

H

Headers.. 70
Help... 13
Hex .. 51
Hide IsBadPtr exceptions .. 85
Hierarchy display location... 54, 159
Highlight ... 83

Active.. 83
Highlighting .. 84
Histogram option... 87
Histogram View .. 65
HitCount profilers ... 21, 96

Description.. 96
Options.. 158

Hook extensions .. 130
HTML ... 78

Exporting results to ... 78

I

Ignore system file settings... 29
Ignore system modules.. 132, 162
Ignore units with names containing..................................... 160
IIS applications.. 144, 155

Getting profiling results .. 144
Profiling .. 155

Imported functions .. 66, 69
Importing results ... 55
Include body time in Details ... 157
Include no-debug in stack.. 85
Increasing profiling speed ... 145
Incremental search... 81
Initial Profiling Status for New Threads.......................... 33, 34
Initial Profiling Status for Starting Thread...................... 33, 34
Initialization bytes discarded... 160
Initialization lines discarded.. 160
Inline functions -- Profiling... 149
In-process servers -- Profiling ... 154
Inserting Profiling Results into Source Code 80
Install Extensions dialog ... 15
Installation... 12
Installing Extensions ... 15
Instruction ... 51
Integration dialog .. 13
Internet Information Server applications

Profiling .. 155
Interpret addresses... 83
Introduction ... 7
ISAPI applications... 155

Profiling .. 155
Items to Profile -- checking ... 32

L

Language for new macros ... 86
Leak Filters dialog... 136

Memory and API Resource Check.................................. 135

Leak resources restriction ..137
Leaked Classes Only..39
Line Coverage (Grouped by File)21, 91

Description ..91
Options ..157
Results description...94

Line Coverage (Grouped by Function)21
Description ..91
Options ..157
Results description...93

Line Coverage profiler ...21
Line HitCount profiler ...96, 98

Description ..96
Options ..158

Line Sampling profiler
Description ..111
Options ..159

Link environment variable ...25
Linked DLLs..66
Load Desktop ...18
Load From File ..58
Loading results from a file ...78
Log file name ...159
Loop Count ..158

M

mac files ...59
Macro Engine

About macros...60
Description ..59
Macro Engine Panel...59
Macro Recording and Playback...61
Options ..86
Window and Process Recognition61

Macros ...60, 61
About ...60

Main menu ...16
Mark selected lines...83, 84, 87

Reprot panel...87
Max consecutive exceptions ..53, 84
Max HitCount ..158, 159
Max leak count...160
Memory

Tracing the usage...125
Memory and API Resource Check profiler......................21, 23

Checking bounds of memory blocks134
Create Filter Condition dialog ...135
Description of results...126
List of Checked Functions ...138
Non-existent resources in the Report panel138
Options ..161
Packages ..132
Predefined filters..137
Preparing ATL applications...129
Profiling memory management routines..........................133
Profiling VC++ applications..129
Profiling VCL Applications...129

Profiler Options

Copyright © 1999-2001 AutomatedQA Corp. support@automatedqa.com

167

Resource leaks in the Report panel 137
Settings Dialog.. 130
Win API Database Editor.. 125

Memory and API Resource Check Profiler......................... 137
Memory manager .. 133
Merge results ... 55, 75, 77
Modify Graph panel series .. 75
Modules Hierarchy Panel .. 68
Modules page – Settings dialog... 131
Monitor

Counter View.. 64
Monitor panel

Description.. 62
Graph View... 64
Options.. 86

Monitor Panel
Histogram View.. 65

Monochrome ... 86
Mops.. 51
MSVC 6.0 MFC Applications -- Memory and API Resource

Check .. 137
Multithreaded applications 36, 37, 152

Assigning names to threads... 152
Profiling .. 152
Result display.. 36

N

Navigating AQtime panels .. 19
No results for Function HItCount in Call Graph 42, 96
No Zoom ... 43
Non-Existent Resources in the Report panel 138
Notes panel

Memory and API Resource Check.................................. 126
Number of child levels .. 82
Number of note lines ... 83
Number of parent levels .. 82
Number of recent results to keep... 85

O

Off-Triggers .. 33, 34
OLE server .. 142, 143

Profiling .. 154
Using AQtime as... 142

On-Line Help... 13
On-Triggers ... 33, 34
Opening a Project in AQtime .. 27
Optimizing the profiling process ... 145
Options .. 85
Ordinary module ... 68
Out-of-process servers -- Profiling...................................... 154
Overloaded functions .. 149
Overseer .. 104, 105
Overview

AQtime.. 7
Panels.. 19
Profilers... 20

P

Packages...22, 129, 130, 133
Compiler settings for C++Builder22
Compiler settings for Delphi ...22
Memory and API Resource Check130

Panel Options ...82
Call Graph panel ..82
Details panel options ...83
Disassembly panel options ..83
Editor panel options...84
Event View opitons ...84
Explorer panel options...85
Graph panel ...85
Macro Engine panel...86
PEReader ...87
Real-Time Monitor Panel ..86
Report panel options..87
Setup panel options..87

Panels ...43, 50, 51, 56, 58, 71
Call Graph Panel..42
Details panel ..43
Disassembly panel ...50
Disassembly Panel ...52
Editor panel ...52
Explorer Panel ...56
Graph panel ...58
How To…..74
Macro Engine Panel...59
Navigating ...19
Organization ..37
Overview ...19
Panel Options...82
Real-Time Monitor ..62
Report Panel ..71
Setup panel ..72
Setup Panel ..73

Parameters of function calls ...125
Memory and API Resource Check126

Parent function color..83
Pass Count trigger option...34
PDB debug format ...23, 25, 151
PE Information...70
Percent with children -- Calculating.....................................144
PEReader ...20

Description ..66
Function Information...69
List of imported and exported functions............................68
Modules Hierarchy ..68
Options ..87
PE Infromation ..70
PEReader panel ...67

PEReaderPlug-In..66
Personal Web Server applications

Profiling...155
Platform Compliance Analysis ..115

Description ..115

INDEX

http://www.automatedqa.com AQtime by AutomatedQA Corp.

168

Options.. 160
Play shortcut.. 86
Playback Macro... 61
Predefined filters

Memory and API Resource Check.................................. 137
Preparing your project

Borland C++ ... 23
Borland C++Builder ... 22
Borland Delphi.. 22
GCC .. 26
Visual Basic .. 25, 26
Visual C++.. 23

Principles of operation
Unused VCL Units profiler... 120

Printing charts ... 58
Procedures Covered less than 50%.. 39
Profile memory management routines................................. 162
Profile new loaded modules .. 162
Profiler Options ... 157

ATL Reference Count Profiler.. 161
BDE SQL profiler ... 161
Coverage profilers... 157
Function HitCount .. 158
Function Profiler ... 157
Function Trace profiler ... 159
Line HitCount profiler .. 158
Memory and API Resource Check.................................. 161
Platform Compliance Analysis 160
Sampling Profiler .. 159
Unused VCL Units.. 160
Unused VCL Units profiler... 160
VCL Profilers.. 159

Profiler Options Dialog ... 157
Profiler results ... 36
Profilers ... 20, 35, 91, 118

ATL Reference Count... 21, 121
BDE SQL profiler ... 22, 124
Binary instrumentation.. 21
Coverage profilers... 21, 91
Exception Tracer... 117
Function HitCount .. 96
Function Profiler ... 21, 100
Function Sampling.. 110
Function Trace .. 21, 103
HitCount profilers ... 21, 96
Line Coverage (Grouped by File) 94
Line Coverage (Grouped by Function) 91
Line Coverage results ... 93
Line HitCount ... 96
Line Sampling... 110
Memory and API Resource Check............................ 21, 125
PEReader .. 20, 66
Platform Compliance Analysis 115
Profiling areas ... 21
Real-Time Monitor ... 22, 62
Sampling profilers... 20, 110
Selecting.. 35

Static Analysis ...20, 89
Unused VCL Units ..118
VCL Class profiler...107
VCL profilers...107
VCL Profilers ..21
VCL Reference Count profiler ..107

Profiling ...28, 29, 145, 146
% with children..144
ActiveX controls..154
Controlling what to profile ..28
DBG files...151
DCOM servers...154
DLLs..153
Enable/disable..29
Getting results during profiling..144
IIS applications ..155
Increasing profiling speed..145
Inline functions ..149, 151
Memory management routines - Memory and API Resource

Check...133
Multithreaded applications ..152
OLE servers ...154
Overloaded functions - Profiling149
PWS applications...155
Recursive Functions ..146
Services..156
SQL queries ...124
Stored procedures ..124
Tips..145
VC++ Applications using Memory and API Resource

Check...129
VCL Applications using Memory and API Resource Check

...129
What to profile -- controlling...28
With PDB or DBG debug Info ..151

Profiling areas ..30
Excluding areas..30
Including areas...30

Project Filter
Memory and API Resource Check135

Project Search Directories..120
Project Setup ..27
Properties ...85
PWS applications ...155

R

Real-Time Monitor22, 62, 63, 126, 134
Counter View...64
Description ..62
Graph View..64
Histogram View...65, 66
Options ..86

Rebase.exe utility ...24
Record all events..86
Record application events ..86
Record AQtime events ...86
Record shortcut ..86

Profiler Options

Copyright © 1999-2001 AutomatedQA Corp. support@automatedqa.com

169

Recording Macro... 61
Recursive Functions .. 146
Reference Count Profiler..................................... 107, 109, 110
Refresh Intervals (ms) ... 86
Relative to real time .. 144
Rely on stack frames ... 160, 161
Remove Graph panel series... 75
Removing columns in panels .. 74
Report panel .. 74

Displaying results as % value or bar graph....................... 74
Formatting columns .. 74
Options.. 87

Report Panel .. 71
Resource leaks restriction.. 137
Resources

Tracing the usage .. 125
Restore Default Docking ... 18
Restrictions.. 133, 137, 138

Extra memory usage restriction 133
Leak resources restriction ... 137
Non-existent resources in the Report panel 138
PDB and DBG files... 151

Results ... 37, 38, 56, 74
% with children... 144, 145
Adding as comments to source files.................................. 78
Analyzing.. 36
Comparison... 76, 77
Copying... 78
Displaying as % value or bar graph 74
Explorer panel... 55
Exporting .. 78
Getting results during profiling....................................... 144
Grouping ... 79
in Report panel.. 36
Managing .. 38
Merging... 77
Searching .. 81
Sorting... 81
Transferring .. 38

Results tab ... 36
Run Parameters dialog... 155
Running the profiler .. 35
Run-time packages .. 22, 129, 130, 133

Compiler settings in C++Builder 22
Compiler settings in Delphi .. 22
Memory and API Resource Check.......................... 130, 132

Run-time type information .. 123

S

Sampling interval (clock ticks).. 159
Sampling profilers ... 20, 111

Description.. 110
Options.. 159

Save Desktop... 18
Save To File .. 58
Saving results to a file ... 78
Search Directories ... 120

Searching..81, 118
Unused units in your application118
Using incremental search...81
Values in results...81

Sections ..70, 71
Select code to profile..30
Selecting a profiler ...35
Selecting Several Records in a Panel75
Series in the Graph panel ...75

Adding new..75
Removing ..75

Services ..144, 156
Getting profiling results...144
Profiling...156

Setting Up Triggers..34
Settings dialog..129
Settings Dialog -- Memory and API Resource Check..........130
Setup panel

Opitons ..87
Setup Panel...30, 72
Setup profiling areas ..30
Shift size ..114, 159
Shortcut menus...17
Show all parents...160, 161
Show allocation parameters ...161
Show API parameters...162
Show API warnings ...162
Show Axes ...86
Show call number ..159
Show call stack ..84, 160, 161
Show error if source not found...160
Show grid lines ..83, 84, 87

Report panel...87
Show group Summary..87
Show grouping panel ...79
Show indicator ...86
Show instruction note as hint ...83
Show instruction note as lines..83
Show methods only under class ...88
Show non-hit functions ..157
Show paths ...87
Show pointing-hand cursor ..82
Show results for all profilers ..85
Show source line summary ..84
Show summary...83, 87
Show the function body in Details ...45
Single-click details...87
Smallest percent identified...157, 158
Sort functions in Call Graph by..157
Sorting results ..81
Source code

File in the Editor panel ..52
SQL queries -- Profiling...124
Stab debug info format...26
Stack...161
Stack frames...107, 161
Static Analysis ...20, 89

INDEX

http://www.automatedqa.com AQtime by AutomatedQA Corp.

170

Description.. 89
Stop shortcut.. 86
Stored procedures -- Profiling ... 124
Sum of All Series .. 87
Sum of All Visible Series.. 87
Support .. 13
Supported Compilers... 12
System files ... 29
System functions ... 29
System Requirements .. 11

T

Tab size in spaces.. 84
Tab-delimited text ... 78

Exporting results to ... 78
TD32 debug info ... 22
Text file ... 78

Exporting resuts to .. 78
Threads.. 36, 152

Assigning names to ... 152
Result display.. 36

Time .. 53
Column in the Event View panel 53

Time from application start ... 53
Tips.. 145
Tolerance... 158
Toolbars .. 16
Top 10 ... 40
Top 10 %... 39
Top 10 % (Net Time) .. 39
Top 10 % (Time w

Children) ... 39
Top 10 Executed Procedures... 39, 40
Top 10 Procedures... 39, 40
Top 10 Procedures (Net Time) .. 39
Top 10 Procedures (Time w. Children) 39
Top 20 ... 39, 40
Top 5 %... 39
Trace with parameters ... 159
Tracing profiler ... 103
Tracing resources and memory ... 125
Track recursion depth.. 158
Triggers ... 33, 34, 35

Options.. 35
Setting up .. 34
Using... 33

U

Uncoved --view... 39
Uninstalling AQtime ... 13
Unreleased Classes Only... 39
Unused VCL Units Profiler... 118

Description.. 118
Options.. 160
Principles of operation .. 120

Update procedure names to Delphi 5 85

Upper case..83
Use debug libraries...129
Used DLLs...66
User Interface - Overview..16
Using AQtime as an OLE server..142
Using triggers...33

V

VCL applications
Profiling with Memory and API Resource Check129

VCL Class Profiler...107
Description ..107
Details panel ..47
Options ..159

VCL Profilers.....................................21, 22, 23, 107, 108, 109
Options ..159
Preparing applications for..22

VCL Reference Count Profiler...107
Description ..107
Details panel ..48
Options ..159

Views ...82
Views implementation ...38
Visual Basic ...12, 25
Visual C++...12, 23, 123

Analyzing applications using Memory and API Resource
Check...129

Compiler settings...23
Compiler Settings - ATL RefCount profiler....................123
Preparing a project...23

W

Warning level...157, 158, 159
Coverage Profilers ...157
Function HitCount ...158
Function Profiler..157
Function Trace profiler ..159
Line HitCount profiler ...158

What to profile ...28
Controlling...29

WinAPI Database Editor..162
Window and Process Recognition ...61
Windows Script Components...60
Work Count trigger option...34

X

XLS..78
Exporting results to..78

XML...78
Exporting results to..78

Z

Zoom In..43
Zoom Out ...43

	Table Of Contents
	Introduction
	Profiling vs. Testing
	What a Profiler Does
	What AQtime does
	Some elementary questions answered with AQtime
	What's New In AQtime 2.0
	System Requirements
	Supported Compilers
	Installation Notes
	Uninstalling AQtime
	Getting On-Line Help
	Getting Support
	Integrating AQtime with Your IDE
	Automatic Integration
	Manual Integration
	Integrating AQtime with Borland Delphi or C++Builder
	Integrating AQtime with Microsoft Visual C++

	Installing Extensions

	Getting Started
	User Interface - Overview
	AQtime Panels
	AQtime Profilers
	Preparing a Project for Profiling
	Compiler Settings for Borland Delphi
	Compiler Settings for Borland C++Builder
	Compiler Settings for Borland C++
	Compiler Settings for Microsoft Visual C++
	Embedded debug information
	Generating debug info as an external PDB file
	Generating debug info as an external DBG file

	Compiler Settings for Microsoft Visual Basic
	Debug info, generated as an external PDB file
	Debug info, included into the executable file

	Compiler Settings for GCC

	Profiling a Project
	Opening a Project
	Controlling What To Profile
	Excluding "System" Files and Functions
	Defining Areas To Profile
	Checking Elements to Profile
	Using Triggers
	Setting Up Triggers
	Selecting a Profiler
	Doing One Profile Run
	Analyzing Profiler Results
	Organization
	Managing results
	Transferring results
	More usability features
	Views Implementation

	Panels Reference
	Panels Reference
	Call Graph Panel
	Details Panel
	Function Profiler - Details
	Function HitCount - Details
	VCL Class Profiler – Details
	VCL Reference Count Profiler – Details
	Memory and API Resource Check - Details
	ATL RefCount Profiler - Details
	BDE SQL Profiler - Details
	Unused VCL Units Profiler - Details

	Disassembly Panel
	Editor Panel
	Event View Panel
	Explorer Panel
	Merging Results
	Comparing Results
	Exporting and Importing results

	Graph Panel
	Macro Engine Panel
	Macro Engine Plug-In
	Macro Engine Panel
	About Macros
	Macro Recording and Playback
	Window and Process Recognition

	Monitor Panel
	Counter View
	Graph View
	Histogram View

	PEReader Panel
	Modules Hierarchy Panel
	Function Information Panel
	PE Information Panel

	Report Panel
	Setup Panel
	Modules pane
	Areas pane
	Triggers pane

	Panels How-To
	Adding and Removing Columns in AQtime Panels
	Column Format
	Displaying Results in the Report, Details and Disassembly Panels
	Graph Panel Series
	Selecting Several Records in a Panel

	Working With Results
	Comparing and Merging Results
	Comparing Results
	Merging Results
	Exporting Results
	Filtering Results
	Grouping Results
	Inserting Profiling Results into Source Code
	Printing Test Results from AQtime
	Searching Results
	Sorting Results
	Views

	Panel Options
	Call Graph Panel Options
	Details Panel Options
	Disassembly Panel Options
	Editor Panel Options
	Event View Panel Options
	Explorer Panel Options
	Graph Panel Options
	Macro Engine Options
	Monitor Panel Options
	PEReader Options
	Report Panel Options
	Report Panel Options
	Setup Panel Options

	Profilers Reference
	Profilers Reference
	Static Analysis
	Coverage Profilers
	Function Coverage Results
	Line Coverage (Grouped by Function) Results
	Line Coverage (Grouped by File) Results

	Hit Count Profilers
	Function Profiler
	Function Trace Profiler
	Description
	Displaying Parameters

	VCL Profilers
	Sampling Profilers
	Platform Compliance Analysis
	Exception Tracer
	Unused VCL Units Profiler
	Description
	Principles of Operation

	ATL Reference Count Profiler
	ATL Reference Count Profiler – Description
	ATL RefCount Profiler – Compiler Settings
	Microsoft Visual C++
	Borland C++Builder

	BDE SQL Profiler
	Memory and API Resource Check Profiler
	General Overview
	Description of Results
	Profiling VC++ Applications
	Profiling VCL Applications
	Settings Dialog
	Profiling Memory Management Routines
	Checking Bounds of Memory Blocks
	Leak Filters Dialog
	Predefined Filters
	Leak Resources Restriction
	Non-Existent Resources in the Report panel
	List of Checked Functions
	COM functions (ole32.dll and oleaut.32.dll)
	GDI functions (gdi32.dll and user32.dll)
	Kernel functions (kernel32.dll)
	Print Spooler functions (printspool.drv)
	Registry functions (advapi32.dll)
	System memory management functions

	Profilers How-To
	Enabling and Disabling Profiling From Application Code
	Getting Results During Testing
	Calculating Percent Time With Children
	Optimizing the Profiling Process
	Profiling Recursive Functions
	Overloaded Functions
	Profiling Inline Functions
	Profiling With Microsoft PDB or DBG Debug Info
	Profiling Multithreaded Applications
	Profiling Dynamic Link Libraries
	Profiling ActiveX Controls, OLE Servers and DCOM Servers
	Profiling IIS and PWS Applications
	Profiling Services

	Profiler Options
	Function Profiler Options
	Function HitCount Options
	Line HitCount Profiler Options
	Sampling Profiler Options
	Function Trace Profiler Options
	VCL Profiler Optoins
	Platform Compliance Options
	Unused VCL Units Profiler Options
	ATL RefCount Profiler Options
	BDE SQL Profiler Options
	Memory and API Resource Check Profiler Options

	INDEX

