QuickReport在Windows2000中自訂報表-2
http://support.microsoft.com/default.aspx?scid=kb;ZH-TW;q282474#1
微軟知識庫文件 – 282474
HOWTO: Print Using Custom Page Sizes on Windows NT and Windows 2000

適用於

This article was previously published under Q282474

SUMMARY

Microsoft Windows 95, Windows 98, and Windows Millennium Edition (Me) are flexible on custom, user-defined page sizes. However, on systems that are running Windows NT and Windows 2000, you must define all page sizes as a form before you can use them. This article describes how to print custom page sizes on Windows NT and Windows 2000 and includes a code sample that demonstrates how to add, select, and delete custom forms.

NOTE: Because of the behavior of the Visual Basic 5.0 Printer object, the changes to the DEVMODE that are made by the call to ResetDC has no effect. Thus, the code sample in this article does not work from Visual Basic 5.0.

This article is divided into the following sections:

· DEVMODE Members That Define or Select Page Size

· How to Programmatically Select a Form

· Form Sources and Functions

· Steps to Add a Local Print Driver for a Network Printer

· Step-by-Step Example
MORE INFORMATION

DEVMODE Members That Define or Select Page Size

Printer drivers store their default settings in a structure called the DEVMODE. When you define or select a page size, four members of this structure may be involved:

· dmPaperSize

· dmPaperLength

· dmPaperWidth

· dmFormName
The dmPaperLength and dmPaperWidth members contain values on all operating systems, but they can only be used to select or define a size on systems that are running Windows 95, Windows 98, or Windows Me. The dmFormName member is only valid for systems that are running Windows NT or Windows 2000. The dmPaperSize member can be used on any 32-bit Windows operating system, as long as the value that is assigned to it corresponds to a size or form that is defined on that system.

Thus, on systems that are running Windows 95, Windows 98, or Windows Me, you can define custom page sizes by height (length) and width or by a predefined paper size. Windows NT-based or Windows 2000-based systems only use defined forms for page sizes, which you can select in one of two ways: set dmFormName or assign a valid "constant" value to dmPaperSize.

To use a particular paper size on Windows NT or Windows 2000, you must define a form for it. The Visual Basic Printer object has PageSize, Height, and Width properties that expose the dmPaperSize, dmPaperLength, and dmPaperWidth members of the DEVMODE. However, the Printer object does not expose a way to select a form by name, nor does it have a method to add a custom form at run time. We must use the Win32 application programming interface (API) to create a custom form and/or select a form by name.

How to Programmatically Select a Form

This article uses the EnumForms basic process to list all forms that are supported for the current printer and to check the height and width of each form. If the specified size is found, it is selected. If it is not found, the code adds the form and then selects it.

There are three ways to programmatically select a form:

· Retrieve the printer's DEVMODE structure, set the dmFormName member, and use the ResetDC function to set this form as the current form for the Device Context (DC) of the printer. When this form is selected for the DC, it is only selected for the calling process and does not change the driver's default setting. This does not require any special permissions. This method is preferred for applications that change a printer's settings.

· Call the SetForm function to change the default form for the printer driver. This method requires full access permissions to the driver. When the default form is changed, it affects every application that uses this driver to print. If this is a network printer, most users do not have the necessary permissions to make this call.

· Assign the system-defined value for the custom form to Printer.PaperSize.

Only the first method is demonstrated in this article's sample code; the sample does not demonstrate the call to SetForm or the value assignment to Printer.PaperSize. The sample captures the system-assigned value of the new custom form by returning the value of its ordinal position in the list that EnumForms returns. Note that this only works for custom forms. Predefined forms have constant values assigned to them that do not correspond to their ordinal position in this list.

When you use the AddForm function to add your custom form, the form is given its own number, if available, which then remains consistent across all printers that use the form. In this case, the form is defined and given a "constant" value for the current system. You can then assign this value to Printer.PaperSize to select it. However, because the number assignment is simply one more than the number of forms that is listed for the current printer when the form was added, this number may not be available because a predefined form is already using that number. Therefore, it is not recommended that you use this value to select a form, and this value is not demonstrated here. If you use this number assignment, and the value for it is unavailable, it will either select the wrong form or raise run-time error 380: "Invalid Property Value."

Form Sources and Functions

Most forms are defined by the operating system and are available to all local printers. However, forms for network printers are defined on the printer server. Some forms may be defined specifically for a given printer driver and only appear in the list for that driver. Another source for forms is custom-defined or user-defined forms, which can be created manually or through code and are available to all local printers on the system. Both printer-specific and user-defined forms are stored in the registry.

The sample in this article uses a few function calls that are related to forms. Briefly, the key functions are as follows:

	Function
	Description

	EnumForms
	Returns information about all of the forms that are supported for the current printer.

	AddForm
	Adds a custom form to the system. The data on this form is stored in the registry. Thus, custom forms are available for all printers, not just the printer that was current when the form was added. The numeric value that the system assigns to this form is simply one number higher than the number of forms that EnumForms returns for the current printer. You must have full rights to the driver to call this function. If you cannot add a form manually, this function call also fails for you. For this reason, you usually cannot use this function on network printers.

	DeleteForm
	Removes a custom form. However, this function does not delete the standard forms that the operating system defines and returns error code 87 if this is attempted. This function also requires the same rights as AddForm.

Although the sample does not use the following functions, it does include the Declares for these functions:

	Function
	Description

	GetForm
	Retrieves information about a specific form.

	SetForm
	Sets the default form information for the specified printer. This function requires full rights, just as changing any printer driver setting does.

It must be emphasized that some of these functions require Full Control permissions on the printer. Therefore, the SetForm, AddForm, and DeleteForm functions almost never work for printers that are installed as "network printers." This is because the drivers for network printers are not installed locally but reside on the printer server, and your User account is unlikely to have Administrator rights on the printer server. This differs from systems that are running Windows 95, Windows 98, or Windows Me, in which all printer drivers (even network printers) are always installed locally. However, you can install network printers as local printers in Windows NT or Windows 2000 and set the Port to the printer queue. Then you can use these functions to make changes without affecting other users who share the printer.

Steps to Add a Local Printer Driver for a Network Printer

1. On the Start menu, point to Settings, and then click Printers. Double-click Add Printer to start the Add Printer Wizard.

2. When prompted, make sure that you click Local printer or My Computer and NOT Network printer. Although you will connect to a network printer, you want to use a driver on My Computer. Click Next to continue.

3. On Windows NT, click Add Port. On Windows 2000, click Create a new port.

4. In the drop-down list box, click Local Port. On Windows NT, click New Port. On Windows 2000, click Next, and you are prompted for a Port Name.

5. Type the location of the printer on the network. For example:

\\printserver\printername
where you use the exact path name to the printer.

6. Click OK, and complete the wizard.

If you change the printer properties for the active printer, you still affect all applications that use that printer, but only for the local system.

IMPORTANT When you use custom page sizes, the behavior differs between Laser or Ink Jet printers and Dot Matrix or impact printers. Obviously, no printer accepts a page size that is wider than it can physically accommodate. But printers that use continuous feed paper can be flexible on page sizes because they print one line at a time. Alternately, Laser and Ink Jet printers print one page at a time. Thus, for example, when you print to a Dot Matrix printer (which uses continuous feed paper), you can easily see the page length during a form feed because the printer advances to the place where it expects the top of the next page to start, regardless of the physical size of the paper that it is using. On Laser and Ink Jet printers, a form feed always ejects a full physical page regardless of the page size it expects. Also, on most Laser printers, the display reads "Load Custom" (or similar) when you ask the printer to print on a user-defined page size.

Step-by-Step Example

1. Set a local printer as the default printer. To do this, follow these steps:

a. On the Start menu, point to Settings, and then click Printers.

b. Right-click the icon for a local printer, and then click Set as default.

2. Start a new Standard EXE project in Visual Basic. Form1 is created by default.

3. Add three CommandButtons and a ListBox control to Form1.

4. Paste the following code into the module of Form1:

5. Option Explicit

6. Private Sub Command1_Click()

7. Dim FormName As String

8. FormName = "MyCustomForm" ' Use special, user-defined form.

9. UseForm FormName

10. End Sub

11. Private Sub Command2_Click()

12. Dim FormName As String

13. ' Get FormName from the ListBox.

14. On Error GoTo ListBoxERR ' Trap for no selection.

15. FormName = Mid(List1.Text, 1, InStr(1, List1.Text, " -") - 1)

16. On Error GoTo 0 ' Turn off Error trap.

17. UseForm FormName

18. Exit Sub

19. ListBoxERR:

20. MsgBox "Select a printer from the ListBox before using this option.", _

21. vbExclamation

22. End Sub

23. Private Sub Command3_Click()

24. Dim RetVal As Long

25. Dim PrinterHandle As Long ' Handle to printer

26. Dim PrinterName As String

27. Dim FormName As String

28. Dim Continue As Long

29. ' Delete form that is selected in ListBox.

30. PrinterName = Printer.DeviceName ' Current printer

31. If OpenPrinter(PrinterName, PrinterHandle, 0&) Then

32. On Error GoTo ListBoxERR ' Trap for no selection.

33. FormName = Mid(List1.Text, 1, InStr(1, List1.Text, " -") - 1)

34. On Error GoTo 0 ' Turn off Error trap.

35. Continue = MsgBox("Are you sure you want to permanently remove " & _

36. FormName & " from " & PrinterName & "?", vbYesNo)

37. If Continue = vbYes Then

38. RetVal = DeleteForm(PrinterHandle, FormName & Chr(0))

39. If RetVal <> 0 Then ' DeleteForm succeeded.

40. List1.Clear ' Reflect the deletion in the ListBox.

41. Form_Load ' Rebuild the list.

42. MsgBox FormName & " deleted!", vbInformation, "Success!"

43. Else

44. MsgBox FormName & " not deleted!" & vbCrLf & vbCrLf & _

45. "Error code: " & Err.LastDllError, vbInformation, "Failure!"

46. End If

47. End If

48. ClosePrinter (PrinterHandle)

49. End If

50. Exit Sub

51. ListBoxERR:

52. MsgBox "Select a printer from the ListBox before using this option.", _

53. vbExclamation

54. ClosePrinter (PrinterHandle)

55. End Sub

56. Private Sub Form_Load()

57. Dim NumForms As Long, I As Long

58. Dim FI1 As FORM_INFO_1

59. Dim aFI1() As FORM_INFO_1 ' Working FI1 array

60. Dim Temp() As Byte ' Temp FI1 array

61. Dim BytesNeeded As Long

62. Dim PrinterName As String ' Current printer

63. Dim PrinterHandle As Long ' Handle to printer

64. Dim FormItem As String ' For ListBox

65. Dim RetVal As Long

66. Dim FormSize As SIZEL ' Size of desired form

67. PrinterName = Printer.DeviceName ' Current printer

68. If OpenPrinter(PrinterName, PrinterHandle, 0&) Then

69. With FormSize ' Desired page size

70. .cx = 214000

71. .cy = 216000

72. End With

73. ReDim aFI1(1)

74. RetVal = EnumForms(PrinterHandle, 1, aFI1(0), 0&, BytesNeeded, _

75. NumForms)

76. ReDim Temp(BytesNeeded)

77. ReDim aFI1(BytesNeeded / Len(FI1))

78. RetVal = EnumForms(PrinterHandle, 1, Temp(0), BytesNeeded, _

79. BytesNeeded, NumForms)

80. Call CopyMemory(aFI1(0), Temp(0), BytesNeeded)

81. For I = 0 To NumForms - 1

82. With aFI1(I)

83. ' List name and size including the count (index).

84. FormItem = PtrCtoVbString(.pName) & " - " & .Size.cx / 1000 & _

85. " mm X " & .Size.cy / 1000 & " mm (" & I + 1 & ")"

86. List1.AddItem FormItem

87. End With

88. Next I

89. ClosePrinter (PrinterHandle)

90. End If

91. End Sub

92. Private Sub UseForm(FormName As String)

93. Dim RetVal As Integer

94. RetVal = SelectForm(FormName, Me.hwnd)

95. Select Case RetVal

96. Case FORM_NOT_SELECTED ' 0

97. ' Selection failed!

98. MsgBox "Unable to retrieve From name", vbExclamation, _

99. "Operation halted!"

100. Case FORM_SELECTED ' 1

101. ' Selection succeeded!

102. PrintTest ' Comment this line to avoid printing

103. Case FORM_ADDED ' 2

104. ' Form added and selected.

105. List1.Clear ' Reflect the addition in the ListBox

106. Form_Load ' by rebuilding the list.

107. End Select

108. End Sub

109. From the Project menu, add a new Module, Module1.

110. Paste the following code into Module1:

111. Option Explicit

112. Public Declare Function EnumForms Lib "winspool.drv" Alias "EnumFormsA" _

113. (ByVal hPrinter As Long, ByVal Level As Long, ByRef pForm As Any, _

114. ByVal cbBuf As Long, ByRef pcbNeeded As Long, _

115. ByRef pcReturned As Long) As Long

116. Public Declare Function AddForm Lib "winspool.drv" Alias "AddFormA" _

117. (ByVal hPrinter As Long, ByVal Level As Long, pForm As Byte) As Long

118. Public Declare Function DeleteForm Lib "winspool.drv" Alias "DeleteFormA" _

119. (ByVal hPrinter As Long, ByVal pFormName As String) As Long

120. Public Declare Function OpenPrinter Lib "winspool.drv" _

121. Alias "OpenPrinterA" (ByVal pPrinterName As String, _

122. phPrinter As Long, ByVal pDefault As Long) As Long

123. Public Declare Function ClosePrinter Lib "winspool.drv" _

124. (ByVal hPrinter As Long) As Long

125. Public Declare Function DocumentProperties Lib "winspool.drv" _

126. Alias "DocumentPropertiesA" (ByVal hwnd As Long, _

127. ByVal hPrinter As Long, ByVal pDeviceName As String, _

128. pDevModeOutput As Any, pDevModeInput As Any, ByVal fMode As Long) _

129. As Long

130. Public Declare Function ResetDC Lib "gdi32" Alias "ResetDCA" _

131. (ByVal hdc As Long, lpInitData As Any) As Long

132. Public Declare Sub CopyMemory Lib "KERNEL32" Alias "RtlMoveMemory" _

133. (hpvDest As Any, hpvSource As Any, ByVal cbCopy As Long)

134. Public Declare Function lstrcpy Lib "KERNEL32" Alias "lstrcpyA" _

135. (ByVal lpString1 As String, ByRef lpString2 As Long) As Long

136. ' Optional functions not used in this sample, but may be useful.

137. Public Declare Function GetForm Lib "winspool.drv" Alias "GetFormA" _

138. (ByVal hPrinter As Long, ByVal pFormName As String, _

139. ByVal Level As Long, pForm As Byte, ByVal cbBuf As Long, _

140. pcbNeeded As Long) As Long

141. Public Declare Function SetForm Lib "winspool.drv" Alias "SetFormA" _

142. (ByVal hPrinter As Long, ByVal pFormName As String, _

143. ByVal Level As Long, pForm As Byte) As Long

144. ' Constants for DEVMODE

145. Public Const CCHFORMNAME = 32

146. Public Const CCHDEVICENAME = 32

147. Public Const DM_FORMNAME As Long = &H10000

148. Public Const DM_ORIENTATION = &H1&

149. ' Constants for PRINTER_DEFAULTS.DesiredAccess

150. Public Const PRINTER_ACCESS_ADMINISTER = &H4

151. Public Const PRINTER_ACCESS_USE = &H8

152. Public Const STANDARD_RIGHTS_REQUIRED = &HF0000

153. Public Const PRINTER_ALL_ACCESS = (STANDARD_RIGHTS_REQUIRED Or _

154. PRINTER_ACCESS_ADMINISTER Or PRINTER_ACCESS_USE)

155. ' Constants for DocumentProperties() call

156. Public Const DM_MODIFY = 8

157. Public Const DM_IN_BUFFER = DM_MODIFY

158. Public Const DM_COPY = 2

159. Public Const DM_OUT_BUFFER = DM_COPY

160. ' Custom constants for this sample's SelectForm function

161. Public Const FORM_NOT_SELECTED = 0

162. Public Const FORM_SELECTED = 1

163. Public Const FORM_ADDED = 2

164. Public Type RECTL

165. Left As Long

166. Top As Long

167. Right As Long

168. Bottom As Long

169. End Type

170. Public Type SIZEL

171. cx As Long

172. cy As Long

173. End Type

174. Public Type SECURITY_DESCRIPTOR

175. Revision As Byte

176. Sbz1 As Byte

177. Control As Long

178. Owner As Long

179. Group As Long

180. Sacl As Long ' ACL

181. Dacl As Long ' ACL

182. End Type

183. ' The two definitions for FORM_INFO_1 make the coding easier.

184. Public Type FORM_INFO_1

185. Flags As Long

186. pName As Long ' String

187. Size As SIZEL

188. ImageableArea As RECTL

189. End Type

190. Public Type sFORM_INFO_1

191. Flags As Long

192. pName As String

193. Size As SIZEL

194. ImageableArea As RECTL

195. End Type

196. Public Type DEVMODE

197. dmDeviceName As String * CCHDEVICENAME

198. dmSpecVersion As Integer

199. dmDriverVersion As Integer

200. dmSize As Integer

201. dmDriverExtra As Integer

202. dmFields As Long

203. dmOrientation As Integer

204. dmPaperSize As Integer

205. dmPaperLength As Integer

206. dmPaperWidth As Integer

207. dmScale As Integer

208. dmCopies As Integer

209. dmDefaultSource As Integer

210. dmPrintQuality As Integer

211. dmColor As Integer

212. dmDuplex As Integer

213. dmYResolution As Integer

214. dmTTOption As Integer

215. dmCollate As Integer

216. dmFormName As String * CCHFORMNAME

217. dmUnusedPadding As Integer

218. dmBitsPerPel As Long

219. dmPelsWidth As Long

220. dmPelsHeight As Long

221. dmDisplayFlags As Long

222. dmDisplayFrequency As Long

223. End Type

224. Public Type PRINTER_DEFAULTS

225. pDatatype As String

226. pDevMode As Long ' DEVMODE

227. DesiredAccess As Long

228. End Type

229. Public Type PRINTER_INFO_2

230. pServerName As String

231. pPrinterName As String

232. pShareName As String

233. pPortName As String

234. pDriverName As String

235. pComment As String

236. pLocation As String

237. pDevMode As DEVMODE

238. pSepFile As String

239. pPrintProcessor As String

240. pDatatype As String

241. pParameters As String

242. pSecurityDescriptor As SECURITY_DESCRIPTOR

243. Attributes As Long

244. Priority As Long

245. DefaultPriority As Long

246. StartTime As Long

247. UntilTime As Long

248. Status As Long

249. cJobs As Long

250. AveragePPM As Long

251. End Type

252. Public Function GetFormName(ByVal PrinterHandle As Long, _

253. FormSize As SIZEL, FormName As String) As Integer

254. Dim NumForms As Long, I As Long

255. Dim FI1 As FORM_INFO_1

256. Dim aFI1() As FORM_INFO_1 ' Working FI1 array

257. Dim Temp() As Byte ' Temp FI1 array

258. Dim FormIndex As Integer

259. Dim BytesNeeded As Long

260. Dim RetVal As Long

261. FormName = vbNullString

262. FormIndex = 0

263. ReDim aFI1(1)

264. ' First call retrieves the BytesNeeded.

265. RetVal = EnumForms(PrinterHandle, 1, aFI1(0), 0&, BytesNeeded, NumForms)

266. ReDim Temp(BytesNeeded)

267. ReDim aFI1(BytesNeeded / Len(FI1))

268. ' Second call actually enumerates the supported forms.

269. RetVal = EnumForms(PrinterHandle, 1, Temp(0), BytesNeeded, BytesNeeded, _

270. NumForms)

271. Call CopyMemory(aFI1(0), Temp(0), BytesNeeded)

272. For I = 0 To NumForms - 1

273. With aFI1(I)

274. If .Size.cx = FormSize.cx And .Size.cy = FormSize.cy Then

275. ' Found the desired form

276. FormName = PtrCtoVbString(.pName)

277. FormIndex = I + 1

278. Exit For

279. End If

280. End With

281. Next I

282. GetFormName = FormIndex ' Returns non-zero when form is found.

283. End Function

284. Public Function AddNewForm(PrinterHandle As Long, FormSize As SIZEL, _

285. FormName As String) As String

286. Dim FI1 As sFORM_INFO_1

287. Dim aFI1() As Byte

288. Dim RetVal As Long

289. With FI1

290. .Flags = 0

291. .pName = FormName

292. With .Size

293. .cx = FormSize.cx

294. .cy = FormSize.cy

295. End With

296. With .ImageableArea

297. .Left = 0

298. .Top = 0

299. .Right = FI1.Size.cx

300. .Bottom = FI1.Size.cy

301. End With

302. End With

303. ReDim aFI1(Len(FI1))

304. Call CopyMemory(aFI1(0), FI1, Len(FI1))

305. RetVal = AddForm(PrinterHandle, 1, aFI1(0))

306. If RetVal = 0 Then

307. If Err.LastDllError = 5 Then

308. MsgBox "You do not have permissions to add a form to " & _

309. Printer.DeviceName, vbExclamation, "Access Denied!"

310. Else

311. MsgBox "Error: " & Err.LastDllError, "Error Adding Form"

312. End If

313. AddNewForm = "none"

314. Else

315. AddNewForm = FI1.pName

316. End If

317. End Function

318. Public Function PtrCtoVbString(ByVal Add As Long) As String

319. Dim sTemp As String * 512, x As Long

320. x = lstrcpy(sTemp, ByVal Add)

321. If (InStr(1, sTemp, Chr(0)) = 0) Then

322. PtrCtoVbString = ""

323. Else

324. PtrCtoVbString = Left(sTemp, InStr(1, sTemp, Chr(0)) - 1)

325. End If

326. End Function

327. Public Function SelectForm(FormName As String, ByVal MyhWnd As Long) _

328. As Integer

329. Dim nSize As Long ' Size of DEVMODE

330. Dim pDevMode As DEVMODE

331. Dim PrinterHandle As Long ' Handle to printer

332. Dim hPrtDC As Long ' Handle to Printer DC

333. Dim PrinterName As String

334. Dim aDevMode() As Byte ' Working DEVMODE

335. Dim FormSize As SIZEL

336. PrinterName = Printer.DeviceName ' Current printer

337. hPrtDC = Printer.hdc ' hDC for current Printer

338. SelectForm = FORM_NOT_SELECTED ' Set for failure unless reset in code.

339. ' Get a handle to the printer.

340. If OpenPrinter(PrinterName, PrinterHandle, 0&) Then

341. ' Retrieve the size of the DEVMODE.

342. nSize = DocumentProperties(MyhWnd, PrinterHandle, PrinterName, 0&, _

343. 0&, 0&)

344. ' Reserve memory for the actual size of the DEVMODE.

345. ReDim aDevMode(1 To nSize)

346. ' Fill the DEVMODE from the printer.

347. nSize = DocumentProperties(MyhWnd, PrinterHandle, PrinterName, _

348. aDevMode(1), 0&, DM_OUT_BUFFER)

349. ' Copy the Public (predefined) portion of the DEVMODE.

350. Call CopyMemory(pDevMode, aDevMode(1), Len(pDevMode))

351. ' If FormName is "MyCustomForm", we must make sure it exists

352. ' before using it. Otherwise, it came from our EnumForms list,

353. ' and we do not need to check first. Note that we could have

354. ' passed in a Flag instead of checking for a literal name.

355. If FormName = "MyCustomForm" Then

356. ' Use form "MyCustomForm", adding it if necessary.

357. ' Set the desired size of the form needed.

358. With FormSize ' Given in thousandths of millimeters

359. .cx = 214000 ' width

360. .cy = 216000 ' height

361. End With

362. If GetFormName(PrinterHandle, FormSize, FormName) = 0 Then

363. ' Form not found - Either of the next 2 lines will work.

364. 'FormName = AddNewForm(PrinterHandle, FormSize, "MyCustomForm")

365. AddNewForm PrinterHandle, FormSize, "MyCustomForm"

366. If GetFormName(PrinterHandle, FormSize, FormName) = 0 Then

367. ClosePrinter (PrinterHandle)

368. SelectForm = FORM_NOT_SELECTED ' Selection Failed!

369. Exit Function

370. Else

371. SelectForm = FORM_ADDED ' Form Added, Selection succeeded!

372. End If

373. End If

374. End If

375. ' Change the appropriate member in the DevMode.

376. ' In this case, you want to change the form name.

377. pDevMode.dmFormName = FormName & Chr(0) ' Must be NULL terminated!

378. ' Set the dmFields bit flag to indicate what you are changing.

379. pDevMode.dmFields = DM_FORMNAME

380. ' Copy your changes back, then update DEVMODE.

381. Call CopyMemory(aDevMode(1), pDevMode, Len(pDevMode))

382. nSize = DocumentProperties(MyhWnd, PrinterHandle, PrinterName, _

383. aDevMode(1), aDevMode(1), DM_IN_BUFFER Or DM_OUT_BUFFER)

384. nSize = ResetDC(hPrtDC, aDevMode(1)) ' Reset the DEVMODE for the DC.

385. ' Close the handle when you are finished with it.

386. ClosePrinter (PrinterHandle)

387. ' Selection Succeeded! But was Form Added?

388. If SelectForm <> FORM_ADDED Then SelectForm = FORM_SELECTED

389. Else

390. SelectForm = FORM_NOT_SELECTED ' Selection Failed!

391. End If

392. End Function

393. Public Sub PrintTest()

394. ' Print two test pages to confirm the page size.

395. Printer.Print "Top of Page 1."

396. Printer.NewPage

397. ' Spacing between lines should reflect the chosen page height.

398. Printer.Print "Top of Page 2. - Check the page Height (Length.)"

399. Printer.EndDoc

400. MsgBox "Check Printer " & Printer.DeviceName, vbInformation, "Done!"

401. End Sub

1. Run the project. The ListBox shows all of the forms that the current printer supports.

2. Click Command1. This adds "MyCustomForm - 214 mm X 216 mm (xxx)" to the end of the list, where "xxx" is the number that is assigned to the new form.

3. Click a form in the ListBox, and then click Command2. This prints a test page to the current printer using the selected form.

4. Click the new custom form in the ListBox, and then click Command3. You are prompted to confirm the deletion of the form. If you click Yes, it removes the custom form. If you try this with a predefined form, it raises error 87 because only custom forms can be deleted.

REFERENCES

For more information on the functions and types that are used in this article, see the MSDN Library CD or the Win32 SDK Programmer's Guide.

For additional information on forms, click the article number below to view the article in the Microsoft Knowledge Base:

157172 How to Create Custom Forms in Windows NT 4.0 and Windows 2000

The information in this article applies to:

· Microsoft Visual Basic Professional Edition for Windows 6.0
· Microsoft Visual Basic Enterprise Edition for Windows 6.0

	Last Reviewed:
	4/22/2003 (1.1)

	Keywords:
	kbAPI kbhowto kbprint kbSample kbSpooler KB282474 kbAudDeveloper

[image: image1][image: image2][image: image3][image: image4][image: image5][image: image6][image: image7][image: image8][image: image9][image: image10][image: image11][image: image12]
