
Windows Vista
User Account Control (UAC) and Delphi
Fredrik Haglund
Developer Evangelist



User Account Control (UAC)

 Security token split during logon 
– one user token and one admin token

 Administrator shell run with Standard User token
 You have to explicitly consent every time you create a process with 

administrator token – this is called “elevation”



Standard User – Over the shoulder elevation



Windows Vista

 UAC is Enabled by Default
 All Subsequent User Accounts are Created as Standard Users
 Elevation Prompts are Displayed on the Secure Desktop by Default
 Elevation Prompts for Background Applications are Minimized to the 

Taskbar
 Elevations are blocked in the User's Logon Path
 Built-in Administrator Account is Disabled by Default on New 

Installations
 New Default Access Control List (ACL) Settings



Standard User

 All processes are started as Standard User as default
 A Standard User can not

– Change files in Program Files folders
– Change files in Windows or System32 folders
– Change registry under HKLM\Software
– Change the local machines date and time
– Install or uninstall Services
– …

 Earlier strong Recommendations are now enforced! 



New Technologies for Windows Vista

 Installer Detection
 User Interface Privilege Isolation
 Virtualization
 Access Token Split during login
 Secure Desktop



User Interface Privilege Isolation 

 General guideline – “lower” can not access “higher”
 A lower privilege process cannot:

– Perform a window handle validation
– SendMessage or PostMessage
– Use thread hooks to attach
– Use Journal hooks to monitor
– Perform dynamic link-library (DLL) injection 

 Some resources are still shared between processes
– Desktop window, which actually owns the screen surface
– Desktop heap read-only shared memory
– Global atom table
– Clipboard



Virtualization / Redirection 

 Virtualization is for compatibility – not a feature
 Disabled for executables with UAC info in manifest!



UAC Architecture



The Shield

 Attached to controls which, if clicked, will require elevation as the next 
step

 Has only one state (I.e. no hover, disabled etc.)
 Does not remember elevated state

– Not an unlock operation



Shield UI Examples



Delphi – What you have to do…

 Test your application – identify problems
 Classify your application as Standard User, Admin or Mixed.
 Add application Manifest
 Redesign functionality

– User apps should write data to correct locations
– Split out admin stuff into a separate executable

 Redesign user interface
– Add shield to buttons

 Redesign installer
 Test again
 Optionally sign application (Authenticode)
 Determine whether to pursue the Windows Vista Logo program



Test with Standard User Analyzer Tool

 SUA helps you find what you do that can break application



Requested Execution Level in Delphi

 NB! Remove all references to XPMan unit from project!!!



RC-file is compiled to RES-file



Manifest



<requierdExecutionLevel />

 level=”asInvoker”
– Start process runing with same token as the process creating it.

 level=”highestAvailable”
– Ask administrators for consent to elevate but start as standard user if 

user has no administrative privileges
 level=”requireAdministrator”

– Ask administrators for consent to elevate.
– Standard user will get login dialog for over the shoulder support
– Will only start with administrative privileges



Windows XP Warning!

 Incorrect formatting of Manifest can blue screen Windows XP
 Read KB921337



Redesign

 Do not open files or registry keys with Write flag
 Save data, log files, etc. in the right location using SHGetFolderPath

– CSIDL_PERSONAL { My Documents }
– CSIDL_APPDATA { Application Data, new for NT4 }
– CSIDL_LOCAL_APPDATA { non roaming, user\Local 

Settings\Application Data }
– CSIDL_COMMON_APPDATA { All Users\Application Data }
– CSIDL_MYPICTURES { My Pictures, new for Win2K }
– CSIDL_COMMON_DOCUMENTS { All Users\Documents }
– …



SHGetFolderPath



RunAsAdmin

 Launch application running as administrator
 Use Application.Handle to delay elevation if app is minimized. 
 No handle always gives direct foreground elevation.



Using COM class for Admin tasks

 COM Server must be an EXE
 EXE must have requireAdministrator to install COM objects correctly
 Registration of COM Class must 

– add value LocalizedString (and resource string in executable)
– add key Elevation and value Enabled = 1



Elevated COM calls

 Use Moniker to create elevated CoClass from User Process



The Shield - SetElevationRequiredState

 Call function with Button as parameter to add Shield symbol



Sign with Authenticode

 Get less serious looking consent dialog
 Register at winqual.microsoft.com
 Buy certificate (Verisign, etc.)
 Sign executables (MakeCert, Signtool.exe)
 Register applications at winqual to get access to crash logs



Resources

 Document
– Windows Vista Application Development Requirements for User 

Account Control Compatibility
 Tool

– Microsoft Standard User Analyzer
 Windows Vista Logo Program

– http://microsoft.mrmpslc.com/InnovateOnWindowsVista/



Thank you! 


