Reusing the WebBrowser Control 

http://trans.myany.com/Trans/tw/Trans.asp?ToLanguage=0&url=http://msdn.microsoft.com/workshop/browser/WebBrowser/WebBrowser.asp
	Reusing the WebBrowser Control 
	Internet Development Index




The WebBrowser control adds browsing, document viewing, and data downloading capabilities to your applications. Applications using this control will allow the user to browse sites on the Internet's World Wide Web, as well as folders in the local file system and on a network. The WebBrowser control supports Web browsing through both point-and-click hyperlinking and URL navigation. The control maintains a history list that allows the user to browse forward and backward through previously browsed sites, folders, and documents. 

The parsing and rendering of HTML documents in the WebBrowser control is handled by the MSHTML component of Microsoft? Internet Explorer 4.0 or later. TheMSHTML component is an Active Document (also known as a DocObject) that provides support for parsing and rendering HTML, exposes the Dynamic HTML (DHTML) Object Model, and hosts Microsoft ActiveX? Controls and script languages. SeeReusing MSHTML for details about directly hosting the MSHTML component in your application. The WebBrowser control acts as a container for the MSHTML component and implements navigation, hyperlinking, history lists, favorites, and security. Applications can also use the WebBrowser control to host Active Documents other than MSHTML. This means that richly formatted documents, such as Microsoft Excel spreadsheets or Microsoft Word documents, can be opened and edited in place from within the WebBrowser control. 

· Updates in Internet Explorer 4.0 and later 

· Using the WebBrowser Control from Visual Basic 

· Using the WebBrowser Control from C/C++ 

· Related Topics
Updates in Internet Explorer 4.0 and later

In Internet Explorer 6 or later, the WebBrowser control is no longer marked "safe for scripting" when it is hosted in Internet Explorer or when it is hosted in the Internet security zone. You might want to use an iframe as an alternative to the WebBrowser control; it provides a browsable container that is scriptable and secure. 

For Internet Explorer 4.0, the following properties, methods, and events have been added:

	Microsoft Visual Basic?
	C/C++
	Type
	Description

	AddressBar
	IWebBrowser2::AddressBar
	property
	Indicates whether the URL address bar is shown.

	Offline
	IWebBrowser2::Offline
	property
	Determines if the browser is in offline mode.

	ReadyState
	IWebBrowser2::get_ReadyState
	property
	Returns the value of the IWebBrowser2::get_ReadyState property.

	RegisterAsBrowser
	IWebBrowser2::get_RegisterAsBrowser
	property
	Indicates whether the WebBrowser control is registered as a top-level browser.

	RegisterAsDropTarget
	IWebBrowser2::RegisterAsDropTarget
	property
	Indicates whether the WebBrowser control is registered as an OLE drop target.

	Resizable
	IWebBrowser2::Resizable
	property
	Indicates whether the InternetExplorer object can be resized. 

	Silent
	IWebBrowser2::Silent
	property
	Indicates whether dialog boxes can be shown.

	TheaterMode
	IWebBrowser2::TheaterMode
	property
	Indicates whether the browser is in "Theater Mode" or a normal browser window. 

	ExecWB
	IWebBrowser2::ExecWB
	method
	Executes a command using the IOleCommandTarget interface.

	Navigate2
	IWebBrowser2::Navigate2
	method
	Navigates the WebBrowser control to a URL.

	QueryStatusWB
	IWebBrowser2::QueryStatusWB
	method
	Returns the status of a command using the IOleCommandTarget interface.

	ShowBrowserBar
	IWebBrowser2::ShowBrowserBar
	method
	Shows or hides a browser bar. 

	BeforeNavigate2
	DWebBrowserEvents2::BeforeNavigate2
	event
	Occurs before the WebBrowser control navigates to a new URL. (replaces BeforeNavigate and FrameBeforeNavigate) 

	DocumentComplete
	DWebBrowserEvents2::DocumentComplete
	event
	Occurs when the value of the IWebBrowser2::get_ReadyState property is changed to READYSTATE_COMPLETE.

	NavigateComplete2
	DWebBrowserEvents2::NavigateComplete2
	event
	Occurs after the WebBrowser control navigates to a new URL (replaces NavigateComplete and FrameNavigateComplete). 

	NewWindow2
	DWebBrowserEvents2::NewWindow2
	event
	Occurs when navigation occurs with the navOpenInNewWindow flag (replaces NewWindow and FrameNewWindow). 

	OnFullScreen
	DWebBrowserEvents2::OnFullScreen
	event
	Occurs when the IWebBrowser2::FullScreen property changes.

	OnMenuBar
	DWebBrowserEvents2::OnMenuBar
	event
	Occurs when the IWebBrowser2::MenuBar property changes.

	OnQuit
	DWebBrowserEvents2::OnQuit
	event
	Occurs before the Internet Explorer application quits.

	OnStatusBar
	DWebBrowserEvents2::OnStatusBar
	event
	Occurs when the IWebBrowser2::StatusBar property changes.

	OnTheaterMode
	DWebBrowserEvents2::OnTheaterMode
	event
	Occurs when the IWebBrowser2::TheaterMode property changes.

	OnToolBar
	DWebBrowserEvents2::OnToolBar
	event
	Occurs when the IWebBrowser2::ToolBar property changes.

	OnVisible
	DWebBrowserEvents2::OnVisible
	event
	Occurs when the IWebBrowser2::Visible property changes.


Internet Explorer 3.0 Compatibility

The new WebBrowser_V1 object is now included with the WebBrowser control. This object supports the set of properties, methods, and events that exist in Internet Explorer 3.0. You can use the WebBrowser_V1 object in a Visual Basic project to run on computers with Internet Explorer 3.0 and later installed. The WebBrowser object requires Internet Explorer 4.0 and later to access the new properties, methods, and events listed above. 

Using the WebBrowser Control from Visual Basic

The WebBrowser control supports properties, methods, and events that allow developers to create a highly customized browser with the WebBrowser object. Companies may want to use the WebBrowser control to create a Web browsing application that restricts navigation to a local intranet and company-approved public Web sites. To use the WebBrowser object, simply add the "Microsoft Internet Controls" component to your Visual Basic project and place the WebBrowser control on a Visual Basic form. Accomplish this by selecting Components on the Project menu in Visual Basic. 

An application can also create and manipulate an instance of the Internet Explorer application through Automation with the InternetExplorer object. To use the InternetExplorer object in a Visual Basic application, declare the object as indicated in the Application property description. 

The WebBrowser object does not support all the properties and methods that are available to the InternetExplorer object. These additional features are indicated in the Applies To list for each method and property. Error codes are returned when these features are used with the WebBrowser object. In Visual Basic, you can trap errors with the "On Error Resume Next" statement and by accessing the Err object's associated properties, such as Err.Number and Err.Description.

Retrieving Information About the WebBrowser Control

Many properties can be used to retrieve information about the WebBrowser control. The LocationName and LocationURL properties can be used to retrieve information about the location that is currently displayed. If the location is an HTML page on the World Wide Web, LocationName retrieves the title of that page, and LocationURL retrieves the URL of that page. If the location is a folder or file on the network or local computer, LocationName and LocationURL both retrieve the Universal Naming Convention (UNC) name or the full path of the folder or file. 

The current status of the WebBrowser control can be obtained using the Busy property. This BOOL value indicates whether the control is engaged in a navigation or downloading operation. You should check the value of this property before issuing the Stop method to cancel navigation or downloading operations. 

Customizing the User Interface

The WebBrowser control supports properties and associated events to manipulate various user interface elements of an Internet Explorer application or a custom browser. The size and position of the window used by the WebBrowser control can be read or set with the Height, Left, Top, and Width properties. Other user interface elements are enabled with individual properties such as MenuBar, FullScreen, StatusBar, and ToolBar. The associated OnMenuBar, OnFullScreen, OnStatusBar, and OnToolBar events are triggered when the property value changes. These events return a BOOL value to indicate the new state of the property and to provide a mechanism to respond to user actions in the InternetExplorer object. 

When using OLE Automation with the InternetExplorer object, the application window can be shown or hidden by setting the value of the Visible property. When changed, the associated OnVisible event returns the current BOOL value of the property. You may also want to retrieve information about the Internet Explorer application itself. To do so, use the Name property to get the Internet Explorer application name, and use the Path and FullName properties to get the Internet Explorer application's path and file name. 

Navigating with the WebBrowser Control

Use the Navigate or Navigate2 method to browse HTML pages on the World Wide Web or any file or folder on the network or local computer. In addition to the required URL argument passed to the Navigate or Navigate2 method, you can optionally include flags to specify more detailed information about the navigation, such as the HTML frame name target and the http headers sent to the server. You can browse through the sites maintained in the browser's history list during each browser session by using the GoBack and GoForward methods. If you wish to go directly to the Internet Explorer home or search pages that have been specified in the Internet Explorer?Options dialog box, use the GoHome or GoSearch method. To display the most current version of a page the browser is viewing, use the Refresh or Refresh2 method. When using OLE Automation, call the Quit method to close the instance of the Internet Explorer application. 

The WebBrowser control fires a number of different events to notify an application of user¹wnd browser´​°_enerated activity. When the browser is about to navigate to a new location, it triggers aBeforeNavigate2 event that specifies the URL or path of the new location and any other data that will be transmitted to the Internet server through the http transaction. The data can include the http header, http post data, and the URL of the referrer. The BeforeNavigate2 event also includes a flag that can be set to cancel the pending navigation request. This event can be useful for checking the requested URL against a database of unauthorized World Wide Web sites or local and network folders, and for canceling the navigation request. The WebBrowser control fires the NavigateComplete2 event after it has navigated to a new location. This event includes the same information as BeforeNavigate2, except NavigateComplete2 does not include the cancel flag. 

Whenever the browser is about to begin a download operation, it triggers the DownloadBegin event. The control also generates a number of ProgressChange events as the operation progresses, and then it triggers the DownloadComplete event after completing the operation. Applications typically use these three events to indicate the progress of the download operation, often by displaying a progress bar. An application would show the progress bar in response to DownloadBegin, update the progress bar in response to ProgressChange, and hide the progress bar in response to DownloadComplete. 

When an application calls the Navigate or Navigate2 method with the navOpenInNewWindow flag, the NewWindow2 event occurs before the new browser window is created. This event allows the application to create the new browser window or have a new instance of the Internet Explorer application created. Once the new window is created, an accompanying BeforeNavigate2 event occurs. 

Note  The events discussed in the preceding section that apply to the InternetExplorer object are supported in Visual Basic version 5.0 and later.

Creating a Custom Browser with Limited Functionality

Suppose you want to create a custom browser application to start and display an HTML page that is not the user's home or start page. You also want the custom browser to navigate only to HTML pages on the local domain or view files on the local hard disk. Here's how you could create this simple application: 

1. Use the Navigate2 method to go to the desired HTML page during form loading. 

2. Private Sub Form_Load()

3. 
On Error Resume Next

'Don't stop execution, continue on next line

4. 
WebBrowser.Navigate2 "http:\\www.xyzcorp.com"

5. 
If Err.Number <> 0 Then MsgBox "Error :" & Err.Description
'Display error message

End Sub

6. Check the URL in the BeforeNavigate2 event to make sure the location string contains the local domain or disk. If the location string doesn't meet the criteria, cancel the operation and display an error message to the user. 

7. Private Sub WebBrowser_BeforeNavigate2(ByVal URL As String, ByVal Flags As Long, 

8.         ByVal TargetFrameName As String, PostData As Variant, ByVal Headers As String, 

9.         Cancel As Boolean)

10.     If (Instr(1,URL,"xyzcorp.com") = 0) And (Instr(1,URL,"C:") = 0) Then

11.         Cancel = True

12.         MsgBox "Access denied to URL: " & URL

13.     End If

End Sub

Printing the Current Page with the WebBrowser Control

The WebBrowser control supports several common file operationsÄ£uch as Print, Print Preview, Save, Save As, New, and Properties¯à¼Öªº°Ûµüith theQueryStatusWB and ExecWB methods. These methods directly access the IOleCommandTarget interface for issuing commands on the Active Document or inquiring about which commands it supports. The following example shows the implementation of a Print command button that, when clicked, checks to make sure the Print command is valid and then displays the print dialog box for the WebBrowser control. 

Private Sub BtnPrint_Click()


Dim eQuery As OLECMDF       'return value type for QueryStatusWB


On Error Resume Next


eQuery = WebBrowser1.QueryStatusWB(OLECMDID_PRINT)  'get print command status


If Err.Number = 0 Then


    If eQuery And OLECMDF_ENABLED Then


        WebBrowser1.ExecWB OLECMDID_PRINT, OLECMDEXECOPT_PROMPTUSER, "", ""    'Ok to Print?


    Else


        MsgBox "The Print command is currently disabled."


    End If


End If


If Err.Number <> 0 Then MsgBox "Print command Error: " & Err.Description

End Sub

Capturing Events with the InternetExplorer Object

When using OLE Automation to control a separately running instance of an application, you will need to create a mechanism to respond to events triggered by that ActiveX object. To create this mechanism, commonly referred to as an event sink, use the following steps as a guideline. 

1. Create a Standard EXE project in Visual Basic version 5.0. 

2. Select References under the Project menu, and add a reference to the "Microsoft Internet Controls" by checking the appropriate box. If this library is not available, you should browse for the Shdocvw.dll file. 

3. Select Add Class Module under the Project menu. 

4. In the General Declarations section of the class module, add this line of code: 

Public WithEvents m_oWbSink As SHDocVw.InternetExplorer

5. At this point, you can select the m_oWbSink object in the left-hand object drop-down menu of the code window. After selecting this object, the right-hand procedure drop-down window lists all of the events supported by this object. Select one of the events, and add the code to process the event. This example updates a text box on the form with the current browser status text. 

6. Private Sub m_oWbSink_StatusTextChange(ByVal Text As String)

7.     Form1.txtStatus.Text = Text

End Sub

8. Add the necessary declarations in the "General Declarations" section of the form, as follows: 

9. 'Global reference to an instance of the browser

10. Dim g_oIE As New SHDocVw.InternetExplorer

11. 'Global reference to an instance of a class that can sink the browser's events

Dim g_oIESink As New Class1

12. Now you can hook up the event sink to the instance of the browser by placing the following code in the form's Form_Load event: 

Set g_oIESink.m_oWbSink = g_oIE

13. Finally, add any additional desired controls (buttons or text boxes, for example) and code to your project. Any events you need to use will be available in your newly created class module. 

Note  The preceding steps are unnecessary when using the WebBrowser object. Events are automatically trapped when you select the WebBrowser control in the Visual Basic toolbox and place it directly on a form. 

Using the WebBrowser Control from C/C++

This section describes some of the common implementations of the WebBrowser control, including: 

· Adding Internet Browsing Functionality to Your Application 

· Printing Pages with the WebBrowser Control 

· Changing Fonts with the WebBrowser Control 

· Working with WebBrowser Events
Adding Internet Browsing Functionality to Your Application

One of the most common uses for the WebBrowser control is to add Internet browsing functionality to your application. Using the IWebBrowser2 interface, you can browse to any location in the local file system, on the network, or on the World Wide Web. You can use the IWebBrowser2::Navigate method to tell the control which location to browse to. The first parameter is a string that contains the name of the location. To browse to a location in the local file system or on the network, specify the full path to the file system location or the UNC name of the location on the network. To browse to a site on the World Wide Web, specify the URL of the site. By including a text box in your application, you can let the user specify the location to browse to and then pass the location to the IWebBrowser2::Navigate method. 

In this example, the WebBrowser control was inserted into a basic Microsoft Foundation Classes (MFC) application. A class was added to the project, and the control was dynamically created in the OnCreate handler of the application's View class. 

CRect rect;

GetClientRect (&rect);

// Create the control.

m_pBrowser = new CWebBrowser;

ASSERT (m_pBrowser);

if (!m_pBrowser->Create(NULL,NULL,WS_VISIBLE,rect,this,NULL))

{

    TRACE("failed to create browser\n");

    delete m_pBrowser;

    m_pBrowser = NULL;

    return 0;

}

// Initialize the first URL.

COleVariant noArg;

m_pBrowser->Navigate("www.microsoft.com",&noArg,&noArg,&noArg,&noArg);

return 0;

In addition, the IWebBrowser2::Navigate method allows you to target a specific frame on an HTML page, causing the WebBrowser control to display a Web site or file system location in that frame. First, you would call the IWebBrowser2::Navigate method and specify the URL of an HTML page that contains a frame. Then, by specifying the name of the frame in subsequent calls to IWebBrowser2::Navigate, you can direct the control to display subsequent locations within that frame. 

You can also use the IWebBrowser2::get_LocationName and IWebBrowser2::get_LocationURL methods to retrieve information about the location that the WebBrowser control is currently displaying. If the location is an HTML page on the World Wide Web, IWebBrowser2::get_LocationName retrieves the title of that page, and IWebBrowser2::get_LocationURL retrieves the URL of that page. If the location is a folder or file on the network or local computer, IWebBrowser2::get_LocationName and IWebBrowser2::get_LocationURL both retrieve the UNC or full path of the folder or file. 

Printing Pages with the WebBrowser Control

Although the WebBrowser control does not support a print method, you can print its contents using one of the following methods: 

· Set the focus to the WebBrowser control and send a key combination of CTRL+P. 

· Call the IWebBrowser2::get_Document method, which returns an IDispatch pointer. Using this IDispatch pointer, call QueryInterface on IID_IOleCommandTarget. With the object pointer returned, call IOleCommandTarget::Exec (NULL, OLECMDID_PRINT, 0, NULL, NULL). 

· LPDISPATCH lpDispatch = NULL;

· LPOLECOMMANDTARGET lpOleCommandTarget = NULL;

· lpDispatch = m_pBrowser.get_Document();

· ASSERT(lpDispatch);

· lpDispatch->QueryInterface(IID_IOleCommandTarget, (void**)&lpOleCommandTarget);

· ASSERT(lpOleCommandTarget);

· lpDispatch->Release();

· // Print contents of WebBrowser control.

· lpOleCommandTarget->Exec(NULL, OLECMDID_PRINT, 0, NULL,NULL);

lpOleCommandTarget->Release();

Changing Fonts with the WebBrowser Control

The WebBrowser automation model does not support a method that allows you to change the font of the text of the currently displayed page. However, the WebBrowser control exposes this functionality through the IOleCommandTarget interface. Call the IWebBrowser2::get_Document method, which returns an IDispatch pointer. Using this IDispatch pointer, call QueryInterface on IID_IOleCommandTarget. With this IOleCommandTarget interface pointer, call IOleCommandTarget::Exec with OLECMDID_ZOOM and use the pvaIn input argument to pass a value in the range of 0 to 5 (where 0 is smallest), indicating the desired scale of the font. This, in effect, mimics the functionality available through the Internet Explorer Fonts command on the View menu. 

LPDISPATCH pDisp = NULL;

LPOLECOMMANDTARGET pCmdTarg = NULL;

pDisp = m_pBrowser.get_Document();

ASSERT(pDisp);

pDisp->QueryInterface(IID_IOleCommandTarget, (LPVOID*)&pCmdTarg);

ASSERT(pCmdTarg);

VARIANT vaZoomFactor;   // input arguments

VariantInit(&vaZoomFactor);

V_VT(&vaZoomFactor) = VT_I4;

V_I4(&vaZoomFactor) = fontSize;

pCmdTarg->Exec(NULL,



OLECMDID_ZOOM,



OLECMDEXECOPT_DONTPROMPTUSER,



&vaZoomFactor,



NULL);

VariantClear(&vaZoomFactor);

if (pCmdTarg)

   pCmdTarg->Release(); // release document's command target

if (pDisp)

   pDisp->Release();    // release document's dispatch interface

Working with WebBrowser Events

The WebBrowser control fires a number of different events to notify an application of user¹wnd browser´​°_enerated activity. The events are implemented using theDWebBrowserEvents2 interface. When the control is about to navigate to a new location, it fires a DWebBrowserEvents2::BeforeNavigate2 event that specifies the URL or path of the new location and any other data that will be transmitted to the Internet server through the http transaction. The data can include the http header, http post data, and the URL of the referrer. DWebBrowserEvents2::BeforeNavigate2 also includes a cancel flag that you can set to FALSE to cancel the navigation. The WebBrowser control fires the DWebBrowserEvents2::NavigateComplete2 event after it has navigated to a new location. This event includes the same information as DWebBrowserEvents2::BeforeNavigate2, but DWebBrowserEvents2::NavigateComplete2 does not include the cancel flag. 

When the WebBrowser control is about to begin a download operation, it fires the DWebBrowserEvents2::DownloadBegin event. The control fires a number of DWebBrowserEvents2::ProgressChange events as the operation progresses, and then it fires the DWebBrowserEvents2::DownloadComplete event after completing the operation. Applications typically use these three events to indicate the progress of the download operation, often by displaying a progress bar. An application would show the progress bar in response to DWebBrowserEvents2::DownloadBegin, update the progress bar in response to DWebBrowserEvents2::ProgressChange, and hide it in response to DWebBrowserEvents2::DownloadComplete. 

When an application calls the IWebBrowser2::Navigate method with the Flags parameter set to navOpenInNewWindow, the WebBrowser control fires the DWebBrowserEvents2::NewWindow2 event before navigating to the new location. The event includes information about the new location and a flag that indicates whether the application or the control is to create the new window. Set this flag to TRUE if your application will create the window or to FALSE if the WebBrowser control should create it. 

You will need to implement an event sink to capture and handle the various events. An example of how to implement an event sink for DWebBrowserEvents2 can be found in the Objvw sample.

Related Topics

· Reference for Visual Basic Developers 

· Reference for C/C++ Developers 

· WebBrowser Control Overviews and Tutorials
