
OpenSSL for Windows 
Developer’s Guide 

 
 
Copyright ©2001 Trizen Systems, Inc., all rights reserved. 
No part of this manual may be reproduced or transmitted in any form or by any means, 
electronic or mechanical, including photocopying, recording, or by any information 
storage and retrieval system, without permission in writing from Trizen Systems. 
 
Visual SSL and Visual 3270 are trademarks of Trizen Systems, Inc.  Delphi and 
C++Builder are trademarks of Borland.  Microsoft and Windows are trademarks of 
Microsoft.  Other brand and product names are trademarks or registered trademarks of 
their respective holders. 
 
 
 
 

Trizen Systems, Inc. 
120 International Parkway 

Suite 220 
Heathrow FL  32746 

 
http://www.trizen.com 

http://www.visualSSL.com 
 

Zaremba@trizen.com 
 

 
This document is to be used in conjunction with Visual SSL and should not be transmitted in any form. 

1 

http://www.trizen.com/
http://www.visualssl.com/
mailto:Zaremba@trizen.com


Trizen’s OpenSSL Documentation and Developer’s Guide Disclaimer 
 
 
This OpenSSL software is subject to U.S. Commerce Department export restrictions, and is intended for 
use in the country or countries into which Trizen released it. You agree to fully comply with all laws and 
regulations of the United States and other countries ("Export Laws") to assure that neither the Software nor 
any direct products thereof are (1) exported directly or indirectly in violation of Export Laws or (2) are 
used for any purpose prohibited by Export Laws including without limitation nuclear, chemical or 
biological weapons production. In particular but without limitation, none of the Software or underlying 
information or technology may be downloaded or otherwise exported or re-exported (i) into (or to a 
national or resident of) Cuba, Haiti, Iraq, Libya, Yugoslavia, North Korea, Iran, or Syria or (ii) to anyone 
on the US Treasury Department's list of Specially Designated Nationals or the US Commerce Department's 
Table of Deny Orders.  By downloading the Software, you are agreeing to the foregoing and you are 
representing and warranting that you are not located in, under control of, or a national or resident of any 
such country or on any such list. 
 
LIMITATION OF LIABILITY 
 
TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, TRIZEN AND ITS SUPPLIERS 
DISCLAIM ALL OTHER WARRANTIES, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT 
LIMITED TO, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A 
PARTICULAR PURPOSE, NON- NFRINGEMENT OR TITLE, WITH REGARD TO THE SOFTWARE 
AND THE ACCOMPANYING DOCUMENTATION.   
 
TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, IN NO EVENT SHALL  
TRIZEN OR ITS SUPPLIERS BE LIABLE FOR ANY DAMAGES WHATSOEVER (INCLUDING, 
WITHOUT LIMITATION, DAMAGES FOR LOSS OF BUSINESS PROFITS, BUSINESS 
INTERRUPTION, LOSS OF BUSINESS INFORMATION, OR ANY OTHER PECUNIARY LOSS) 
ARISING OUT OF THE USE OF OR INABILITY TO USE THIS OPENSSL PRODUCT EVEN IF 
TRIZEN HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. IN ANY CASE, 
TRIZEN'S ENTIRE LIABILITY UNDER ANY PROVISION OF THIS LICENSE AGREEMENT 
SHALL BE LIMITED TO US$0. 
 
In general, the OpenSSL software, “software”, is managed by the OpenSSL organization and is licensed 
under an Apache style license. If you use the software that is produced by the OpenSSL organization it is 
your responsibility to disclose and conform to any and all license requirements as dictated by the OpenSSL 
organization.  THIS IS NOT A PRODUCT MANAGED OR DEVELOPED BY TRIZEN.  TRIZEN IS 
PROVIDING THIS MANUAL AS A SUPPLEMENT TO ANY DOCUMENTATION PROVIDED BY 
THE OPENSSL ORGANIZATION. 
 
 
HIGH RISK ACTIVITIES 
The Software is not fault-tolerant and is not designed, manufactured or intended for use or resale as on-line 
control equipment in hazardous environments requiring fail-safe performance, such as in the operation of 
nuclear facilities, aircraft navigation or communication systems, air traffic control, direct life support 
machines, or weapons systems, in which the failure of the Software could lead directly to death, personal 
injury, or severe physical or environmental damage ("High Risk Activities"). Trizen and its suppliers 
specifically disclaim any express or implied warranty of fitness for High Risk Activities. 
 
OPENSSL DISCLAIMER 

This software package uses strong cryptography, so even if it is created, maintained and 
distributed from liberal countries in Europe (where it is legal to do this), it falls under certain 
export/import and/or use restrictions in some other parts of the world.  

 
This document is to be used in conjunction with Visual SSL and should not be transmitted in any form. 

2 



PLEASE REMEMBER THAT EXPORT/IMPORT AND/OR USE OF STRONG CRYPTOGRAPHY 
SOFTWARE, PROVIDING CRYPTOGRAPHY HOOKS OR EVEN JUST COMMUNICATING 
TECHNICAL DETAILS ABOUT CRYPTOGRAPHY SOFTWARE IS ILLEGAL IN SOME PARTS 
OF THE WORLD. SO, WHEN YOU IMPORT THIS PACKAGE TO YOUR COUNTRY, RE-
DISTRIBUTE IT FROM THERE OR EVEN JUST EMAIL TECHNICAL SUGGESTIONS OR EVEN 
SOURCE PATCHES TO THE AUTHOR OR OTHER PEOPLE YOU ARE STRONGLY ADVISED 
TO PAY CLOSE ATTENTION TO ANY EXPORT/IMPORT AND/OR USE LAWS WHICH APPLY 
TO YOU. THE AUTHORS OF OPENSSL ARE NOT LIABLE FOR ANY VIOLATIONS YOU MAKE 
HERE. SO BE CAREFUL, IT IS YOUR RESPONSIBILITY.  

CREDIT INFORMATION: This product includes cryptographic software written by Eric A. Young 
(eay@cryptsoft.com). This product includes software written by Tim J. Hudson 
(tjh@cryptsoft.com).  

 
 
 
 
 
 

 
This document is to be used in conjunction with Visual SSL and should not be transmitted in any form. 

3 



Contents 
 
OpenSSL for Windowstm .................................................................................................... 1 
Developer’s Guide .............................................................................................................. 1 
Introducing OpenSSL ......................................................................................................... 5 

Before you Begin ............................................................................................................ 5 
What’s Included in the Developer’s Guide?................................................................... 5 
Building the OpenSSL Libraries..................................................................................... 5 
Creating Your Own Certificate Authority .................................................................... 13 

Creating the Directory Structure............................................................................... 13 
Creating the Random File (.rnd) ............................................................................... 13 
Creating the CA Key File ......................................................................................... 14 
Creating the Config File (OpenSSL.cnf) .................................................................. 15 
Having problems opening the Configuration File .................................................... 17 
Creating the Database (index.txt) and Serial files for the CA .................................. 17 
Creating the CA Certificate ...................................................................................... 18 
Creating a NEW Public Certificate and Key Pair..................................................... 20 
Signing Certificate Requests (Being a Certificate Authority) .................................. 24 
Adjusting the Certificates for Windows Operating Systems .................................... 26 
Installing the CA Certificate into the Windows Operating System.......................... 27 
Using Internet Explorer to Install the Certificate...................................................... 34 

Certificate Chaining .............................................................................................. 35 
Importing the CA Certificate ................................................................................ 35 

Using the OpenSSL Applications s_server.exe & s_client.exe .................................... 39 
Running s_client.exe and s_server.exe ..................................................................... 39 
Creating a CAFile ..................................................................................................... 43 

OpenSSL Utilities ......................................................................................................... 48 
S_SERVER............................................................................................................... 48 
S_CLIENT ................................................................................................................ 52 
ASN1PARSE ............................................................................................................ 55 
DSAPARAM ............................................................................................................ 55 
GENDSA .................................................................................................................. 56 
RAND ....................................................................................................................... 56 
VERIFY .................................................................................................................... 57 
enc ............................................................................................................................. 61 
version....................................................................................................................... 63 
PKCS12..................................................................................................................... 63 

Authenticode and Digitally Signing Your Applications............................................... 90 
Summary ..................................................................................................................... 104 
Index ........................................................................................................................... 105 

 
This document is to be used in conjunction with Visual SSL and should not be transmitted in any form. 

4 



Building the OpenSSL Libraries 
 

Introducing OpenSSL 
“The OpenSSL Project is a collaborative effort to develop a robust, commercial-grade, 
full-featured, and Open Source toolkit implementing the Secure Sockets Layer (SSL 
v2/v3) and Transport Layer Security (TLS v1) protocols as well as a full-strength general 
purpose cryptography library. The project is managed by a worldwide community of 
volunteers that use the Internet to communicate, plan, and develop the OpenSSL toolkit 
and its related documentation.” 
   

-OpenSSL Organization 
   

Before you Begin 
This guide makes several assumptions: 1) You have a Visual C++ compiler version 6.0 or 
higher. 2) You are an experienced programmer using C++.  3) You have familiarity with 
the MS-DOS operating system and command line utilities. 
 
The manual is intended for developers interested in using the OpenSSL toolkit and 
interested in using the OpenSSL libraries within their applications.  It is also useful for 
gaining insight into Public Key Infrastructure (PKI) and Certificate Authority 
management as well as the usefulness of the OpenSSL command line tools. 
 

What’s Included in the Developer’s Guide? 
The OpenSSL for Windows Developer’s Guide is made up of the following chapters: 
 

Building the OpenSSL Libraries This chapter focuses on Downloading and Building OpenSSL 
Creating a Certificate Authority Describes Creating, Issuing, and Signing Certificates within Windows 
Using s_server & s_client Describes using the two most important utilities in OpenSSL 
OpenSSL Utilities Using other OpenSSL Utilities 
Authenticode Digitally Sign your applications, use an SSL Server Certificate 

 

Building the OpenSSL Libraries 
In order to use the OpenSSL toolkit you must download it from the OpenSSL web site.  
This is fairly straightforward.   
 
1) Visit http://www.openssl.org/source and download the latest (non-engine) tarball.  A 

tarball, UNIX related, is similar to a zip file.  Save the file anywhere on your hard 
drive, but remember its location. 

 
2) Download and/or purchase WinZip at  http://www.winzip.com.  We recommend you 

spend the $40 to purchase a licensed copy of WinZip.   
 

 
This document is to be used in conjunction with Visual SSL and should not be transmitted in any form. 

5 

http://www.opensource.org/
http://www.netscape.com/eng/ssl3/
http://www.consensus.com/ietf-tls/ietf-tls-home.html
http://www.openssl.org/source
http://www.winzip.com/


Building the OpenSSL Libraries 
 

 
3) Go to the location where you downloaded and saved the openssl zip/tar file.  If you 

are using WinZip as your registered zip utility, it should have a WinZip icon.  Just 
double click on the icon. 

 

 
 
 3.1) If you see the following dialog, just press Yes to Continue: 
 

 
 
 
 
3.2) You should see the following dialog.  Notice that this is a very large file.  Also note 
that there are almost 1500 files associated with the tarball. 
 

 
 

 
This document is to be used in conjunction with Visual SSL and should not be transmitted in any form. 

6 



Building the OpenSSL Libraries 
 

 
 
 
 
 
4) Extract the files to C:\OpenSSL by selecting Actions | Extract.  Create the OpenSSL 

directory in the “Extract to:” field by making your screen look similar to the next 
image then click Extract. 

 

 
 
4.1) This new OpenSSL directory will now house a new folder titled: 

 
4.2) The latest version may have a different version number than the above, but it 

should be similar.  You can close the WinZip application.  But notice that there is 
no MSVC folder within the openssl-9.6.a folder.  This will be installed later. 

 
5) Download the MS Developer Studio Workspace by visiting 

http://www.iconsinc.com/~agray/ossldev/ and click on the NO-ASM Non Assembler 
version.  This file should be VC6ossl096a.zip noting that version numbers may differ 
slightly.  Assembler versions will have a ‘masm’ or ‘nasm’ included in the title—DO 
NOT DOWNLOAD these.  Save this zip file anywhere on your hard drive by clicking 
on its link or Shift+click on its link, but remember its location.  If the above website 
is unavailable then visit the OpenSSL website and look for related information, which 
should have a link. 

 
6) Double click on the saved VC6ossl096a.zip file (the version number may be 

different) which will open up the WinZip utility.  You must extract this file into the 
above openssl-0.9.6a directory created earlier in step 4. 

 
This document is to be used in conjunction with Visual SSL and should not be transmitted in any form. 

7 

http://www.iconsinc.com/~agray/ossldev/


Building the OpenSSL Libraries 
 

 
 
6.1) NOTE:  Upon extracting the file into this directory you should have the following 

directory structure (with the new MSVC directory): 
 

 
 

7) If you have not already done so, you must install Visual C++ 6.0.  Remembering to 
run the VCVARS32.bat file.  This file is located in the VC98 directory of the 
Microsoft Visual Studio folder.  Just double click on the VCVARS32.bat file. 

 
8) You must now download Perl for Windows.  We have chosen ActivePerl and it can 

be downloaded at http://www.activestate.com/Products/ActivePerl/.   Of course any 
Perl for Windows will work, but make sure that your PATH variable has the location 
of the Perl.exe file appended to the PATH variable string after you have installed 

 
This document is to be used in conjunction with Visual SSL and should not be transmitted in any form. 

8 

http://www.activestate.com/Products/ActivePerl/


Building the OpenSSL Libraries 
 

ActivePerl.  This can be checked in Windows ME by going to Start | Run and typing 
MSCONFIG.EXE.  You should see the following dialog, noting that the installation 
location for this example is c:\Perl\bin.  This is the directory path to where the 
Perl.exe file was installed.  By adding this location to your path variable you can 
issue a Perl command from any DOS prompt without having to be in the same 
directory as the Perl.exe file. 
 

 
 
9) Notice the new C:\Perl\bin entry in the PATH variable.  Again, this location 

represents this example. The location where you install Perl may differ slightly.  Just 
make sure that the directory to the Perl.exe file that is installed with ActivePerl is 
appended somewhere in the PATH variable string.  Windows NT users can access the 
PATH variable by right clicking on the My Computer icon, selecting the Advanced 
tab and then clicking on the Environment Variables button.  For other operating 
systems, please see your Windows OS documentation for PATH variables. 

 
10) Once you have a Perl program installed, you should copy the command.com 

(cmd.exe for NT) to the openssl-0.9.6a directory.  This will allow you to run the 
necessary Perl scripts provided with the OpenSSL toolkit.  The command.com or 
cmd.exe file can be found in your Windows or WINNT  directory.  Users of 
Windows NT/2000/XP must use cmd.exe.   

 

 
This document is to be used in conjunction with Visual SSL and should not be transmitted in any form. 

9 



Building the OpenSSL Libraries 
 

11) Double click on the new command.com file (or cmd.exe) in your openssl-0.9.6a 
directory.  At the command prompt type the following and press enter noting that this 
command is case sensitive: 

 
C:\OpenSSL\openssl-0.9.6a>Perl Configure VC-WIN32 

 
 You should see something similar to the following screen: 
 

 
 
11.1) If you don’t see the above information after you type the Perl Configure VC-

WIN32 command you should review your steps and possibly delete the OpenSSL 
directory, extracting the files again and starting over.  If you get an error that 
states: 

 
“‘perl is not recognized as an internal or external operable program or 
batch file” 

 
11.2) If you get the above message, then check to make sure you have installed Perl and 

that the directory location of Perl.exe is contained somewhere in the PATH 
system variable. 

 
12)  At the same command prompt type the following and press enter: 
 

C:\OpenSSL\openssl1-0.9.6a>ms\do_ms.bat 
 

 
This document is to be used in conjunction with Visual SSL and should not be transmitted in any form. 

10 



Building the OpenSSL Libraries 
 

You should see something similar to the following screen:  
 

 
 
 
12.1) If you don’t see something similar to the above, you may have to start over 

making sure you have typed everything correctly and placed the extracted files in 
the right directories. 

 
13)   At the same command prompt type the following and press enter: 
 

C:\OpenSSL\openssl-0.9.6a>perl msvc\doinc.pl 
 
13.1) If all goes well, the screen should pause for a second and then basically return the 

command prompt.  This command will create three (3) new directories in the 
openssl-0.9.6a directory: 

 
• inc32 
• out32dll 
• tmp32dll 

 
13.2) The most important of these is the out32dll directory which will have the 

Microsoft Visual C++ Release and Debug directories.  Within these directories 
will be the OpenSSL libraries after a successful build in Visual C++.  At this 
point you should check the openssl-0.9.6a directory to make sure these were 
successfully created. 

 
13.3) If these directories do not appear in your openssl-0.9.6a then try starting from the 

beginning making sure you follow each step carefully. 

 
This document is to be used in conjunction with Visual SSL and should not be transmitted in any form. 

11 



Building the OpenSSL Libraries 
 

 
14) Open Visual C++ and open the OpenSSL.dsw file in the newly created msvc 

directory within the openssl-0.9.6a directory.  You may have to select *.dsw from the 
types of files to view in the Open project dialog. 

 
15) You should see approximately 59 or so projects.  The most important projects being 

the SSLeay32 and Libeay32 projects.  Other important projects are the s_server and 
s_client projects. 

 
16) At this point you should perform a batch build by selecting from the menu bar, Build | 

Batch Build. Press the Rebuild All button on the resulting form making sure that all 
projects are checked: 

 
16.1) This will take upwards of 10 minutes to compile all the projects including the 

Debug and Release versions.  You should hear several windows attention 
“beeps” as the compiler moves from project to project. 

 
17) At this point the OpenSSL libraries: SSLeay32.dll and Libeay32.dll can be utilized in 

your applications. They can be found in the Release directory of the out32dll 
directory within the openssl-0.9.6a directory. 

 
18) APPEND YOUR PATH VARIABLE TO POINT TO THE NEW RELEASE 

DIRECTORY UNDER THE OUT32DLL i.e. PATH=c:\OpenSSL\openssl-
0.9.6a\out32dll\release.  Make sure that the OpenSSL release directory for the 
correct version is contained in the PATH variable or you will not be able to 
execute the OpenSSL commands from anywhere but the release directory. 
 
 
 
 
 

 
This document is to be used in conjunction with Visual SSL and should not be transmitted in any form. 

12 



Creating Your Own Certificate Authority 
 

Creating Your Own Certificate Authority 
 
What is a Certificate Authority?  A Certificate Authority is a clearinghouse of sorts that 
will provide a signed certificate that you may use in your applications.  Some of the most 
notable are Verisign and Thawte which provide SSL certificates for use within web 
servers as well as Authenticode certificates for Microsoft ActiveX distribution.  These 
certificates enable encryption as well as provide a “security blanket” of sorts that ensures 
a company is safe to communicate with. 
 
By creating your own certificate authority, developers can utilize their own certificates in 
their applications.  Visual 3270 and Visual SSL, products designed by Trizen all use 
certificates created by a Certificate Authority under a Trizen server.  If you want to create 
your own certificates then you must create a CA structure on your network that can be 
accessed. 
 
Of course you can get started right away by using the server.pem and/or client.pem files 
that come with OpenSSL.  These files can be found in c:\OpenSSL\openssl-0.9.6a\apps 
directory. 
 
Creating the Directory Structure 
 
This is relatively painless.  Create a directory named CARoot anywhere on your hard 
drive.  For this documentation we are creating a new directory at c:\CARoot.  Within this 
directory create four new directories so that your directory structure looks similar to the 
following: 
 

   
 
 
Creating the Random File (.rnd) 
 
First, copy the command.com or cmd.exe file to the CARoot directory.  Next, create a 
.rnd file in the new private subdirectory—the tricky part is saving it without a prefix so 
that it is named “.rnd” rather than “random.rnd” or something similar.  To do this in 
windows, double click on the command.com or cmd.exe file in the CARoot directory.  At 
the MS-DOS (command) prompt type the following and press enter to create the “.rnd” 
file without a prefix: 
 
 C:\CARoot>edit private\.rnd 
 
When the MS-DOS text edit fills the screen, just type in a bunch of data or open up a file 
of data such as an executable file, then save the file.  You should now have a “.rnd” file 

 
This document is to be used in conjunction with Visual SSL and should not be transmitted in any form. 

13 



Creating Your Own Certificate Authority 
 

located in the CARoot\private directory.  If you don’t have a “.rnd” file, then make sure 
you follow the directions exactly as outlined. 
 
Creating the CA Key File 
 
At this point you must make your Certificate Authority (CA) private key and certificate 
files.  These files will be utilized when creating other certificates signed by your own 
Certificate Authority.  You will be using the command prompt many times, so to save on 
navigation you should have already placed another copy of the command.com or cmd.exe 
file into: 
 

 c:\CARoot  
 
Double click on this file (command.com or cmd.com) unless its already open, and from 
the command prompt type the following and then press enter: 
 
 C:\CARoot>genrsa –out private\ca.key –rand private\.rnd 2048 
 
NOTE:  Switches and Options that are usually preceded by a ‘—‘ are used to specify certain attributes or 
properties of the command.  There should be a space before the ‘—‘ and after the switch/option  
 
The above command will generate an RSA Key file that will represent the CA Key file 
and will be used to generate public certificates. Double check to make sure the ca.key file 
is now in the private directory in the CARoot directory that was created earlier.  If you get 
an error saying “bad command” then make sure you have modified your PATH 
environment variable to point to c:\OpenSSL\openssl-0.9.6a\out32dll\release directory 
(see Building the OpenSSL Libraries).  If all has gone well then you should have seen 
something similar to the following screen shot: 
 

 
 
If you want to add a password to your private key file, which is highly recommended, 
then perform the following command writing over the existing file: 
 
 C:\CARoot>genrsa –out private\ca.key –rand private\.rnd –des3 2048 
 

 
This document is to be used in conjunction with Visual SSL and should not be transmitted in any form. 

14 



Creating Your Own Certificate Authority 
 

Notice that all we added was the –des3 switch.  If you would like to see more information 
about this command type: 
 
 C:\CARoot\genrsa –help 
 
You may use this switch for any of the OpenSSL commands and comes in quite handy 
when you forget a switch option. 
 
Creating the Config File (OpenSSL.cnf) 
 
The Config file, named OpenSSL.cnf, is used for creating public certificates.  The config 
file has all the information necessary to reproduce a public certificate based on the CA 
architecture and the CA Key file.  A sample of a config file is provided in the OpenSSL 
apps directory.  Unfortunately, Windows views any file with a .cnf extension as a speed 
dial file and may be tough to locate; however, look for a file named “openssl” without a 
visible extension with a “speed dial” association: 
 
 
 
 

opy this file from the OpenSSL apps directory to the CARoot directory.  If not already 

 
 
C
open, double click on the command.com or cmd.exe file in the CARoot directory and 
type the following into the MS-DOS prompt: 
 
 C:\CARoot>edit openssl.cnf 
 

 
This document is to be used in conjunction with Visual SSL and should not be transmitted in any form. 

15 



Creating Your Own Certificate Authority 
 

This will bring up the MS-DOS editor with the openssl.cnf file opened for editing.  The 

# OpenSSL example configuration file. 

following snippet represents Trizen’s configuration file: 
 

# This is mostly being used for generation of certificate requests. 
# 
 
 T# his definition stops the following lines choking if HOME isn't 
# defined. 

= . HOME  
RANDFILE  = $ENV::HOME/.rnd 
 
 Extra OBJEC DENTIFIER info: # T I
#oid_file  = $ENV::HOME/.oid 
oid_section = new_oids 
 
 To use this configuration file # with the "-extfile" option of the 
# "openssl x509" utility, name here the section containing the 
# X.509v3 extensions to use: 
# extensions =  

ely, e a config# (Alternativ  us uration file that has only 
# X.509v3 extensions in its main [= default] section.) 
 
 new_oids ] [
 
 We can add n# ew OIDs in here for use by 'ca' and 'req'. 
# Add a simple OID like this: 
# testoid1=1.2.3.4 

e substituti# Or use config fil on like this: 
# testoid2=${testoid1}.5.6 
 
############################ ######################################## 
[ ca ] 

_ca = CA_default  # The default ca section default
 
########### ################ ########################### #### #### ###### 
[ CA_default ] 
 
ir             d  = .       # Where everything is kept 
certs  = $dir/cer  # Where the issued certs are

r 
ts  kept 

crl_di  = $dir/crl  # Where the issued crl are kept 
database         = $dir/index.txt         # database index file. 

. new_certs_dir = $dir/newcerts # default place for new certs
 
ertificate     = $dir/private/c rt   # The CA certificate c  a.c
serial           = $dir/serial            # The current serial number 
crl   = $dir/crl.pem  # The current CRL 

te_ke       a.ke ey priva y = $dir/private/c y  # The private k
RANDFILE  = $dir/private/.rnd     # random data to use with certs 

 

he most important components are the highlighted items and are discussed as follows: 

1. dir:  Should be “.” which means “the current directory where this 

2. should be saved. 
 should no 

longer be accepted. 

 
T
 

(openssl.cnf) configuration file is located.” 
certs: where issued or requested certificates 

3. crl_dir: Certificate Revocation Lists, those certificates that are

 
This document is to be used in conjunction with Visual SSL and should not be transmitted in any form. 

16 



Creating Your Own Certificate Authority 
 

4. database:  a text (index.txt) file that will hold the increment of the 
certificates issued. 

5. new_certs_dir:  Signed certificates will be placed here 
(C:\CARoot\newcerts). 

y (ca.crt). 
7. s given a serial number as it is created, this keeps 

9. he file that will be used in creating keys.  It should be 
n 

 
Other elements s will be 
sked, how they will be asked and other defaults.  You may notice later in the 

bove to 

on file (openssl.cnf) match the above, save it 
 the c:\CARoot directory.  You will now have an openssl.cnf file in the CARoot folder 

lems opening the Configuration File 

s, don’t be alarmed.  From an MS-
OS prompt, navigate to the openssl.cnf file.  At the prompt type the following and press 

6. certificate:  The CA Certificate derived from the CA Ke
serial:  Each certificate i
the increment. 

8. private_key:  The CA Key file.  Keep this private (ca.key). 
RANDFILE:  T
noted that some attacks and breaches of encryption have bee
accomplished by using the random number.  Keep this private. 

 are used in developing public certificates, such as what question
a
configuration file that the default country may be AU, you should change this to reflect 
your country such as US.  At this point make all the modification highlighted a
the openssl.cnf file in the MS-DOS editor. 
 
After you have made the sample configurati
in
(directory). 
 
Having prob
 
If you’re having problems opening the file in Window
D
enter: 
 
 C:\OpenSSL\openssl-0.9.6a\apps>edit openssl.cnf 

now make your changes and 
en save the file to the CARoot directory.  

ial files for the CA 

figuration file above 
hich points to a file named index.txt.  This file is made up of line entries for each new 

 
This will bring up the file in an MS-DOS editor.  You can 
th
 
Creating the Database (index.txt) and Ser
 
You should take note of the database entry in the openssl.cnf Con
w
certificate signed by the CA.  To create the index file, type the following at the 
C:\CARoot file then press enter: 
 
 C:\CARoot>touch .\index.txt 

et the file’s timestamp to the current system time.  
 
NOTE: Touch is a program that will s
If you don’t have the touch.exe file or equivalent, don’t worry, just create a text file 
named index.txt in the CARoot directory. 
 

 
This document is to be used in conjunction with Visual SSL and should not be transmitted in any form. 

17 



Creating Your Own Certificate Authority 
 

 

 

This document is to be used in conjunction with Visual SSL and should not be transmitted in any form. 
18 

 

You must now create the serial file.  This file can be created by typing the following at 
the MS-DOS prompt and then press enter: 

 C:\CARoot>echo 01 > serial 
 
This will create a file named serial in the CARoot directory.  You can open this file with 
WordPad or Notepad (right click on the file, select “Open with” and then select 
“WordPad”).  If you open the file you will see it contains one line with the text “01” 
without the quotes.  OpenSSL documentation uses double quotes around the ‘01’; 
however, this will not work in Windows.  Ensure no quotes exist around the 01. 
 
To summarize, you should now have two files in the CARoot directory named serial and 
index.txt.  Note that these two files are documented in the Configuration file (openssl.cnf) 
with the names: database (for the index.txt) and serial (for the serial file).  Make sure that 
these files are in the C:\CARoot directory and not any sub directories. 
 
Creating the CA Certificate 
 
At this point you can now successfully create the CA Certificate. Make sure you have 
updated the PATH environment variable to reflect the [c]:\OpenSSL\openssl-
0.9.6a\out32dll\release files that have been created in the OpenSSL Visual C++ build 
(your path may differ slightly from the above).  Double click on the command.com or 
cmd.exe file located in your CARoot directory.  At the command prompt type the 
following and press enter: 
 

C:\CARoot>req –new –x509 –days 3650 –key private\ca.key –out private\ca.crt –
config openssl.cnf 

 



Creating Your Own Certificate Authority 
 

Notice in the above screen shot that we were asked a series of questions.  As you create 
our certificates you should use your own CA information being aware that you should 

lf 

! 

y
give your certificate a long expiration date such as the 10 year date above.  Notice also 
the question text is derived from the configuration file (openssl.cnf).  Also notice that 
nothing has been added to any other directory such as the newcerts directory after this 
command.  Remember, when using the req.exe application above, you are creating a se
signed certificate!  A self signed certificate is “dummy” certificate and has not been 
signed by a Certificate Authority.  If you have turned on any client or server verification, 
it will fail with a return code of (18), which means a self signed certificate.   For CA 
Certificates, they are all self-signed because you are the top of the chain; however, when 
you create other certificates, you will sign those certificates with your CA information
The following represents what your self signed CA certificate should now look like if 
opened in WordPad: 
 

-----BEGIN CERTIFICATE----- 
MIIEhTCCA22gAwIBAgIBADANBgkqhkiG9w0BAQQFADCBjTELMAkGA1UEBhMCVVMx 
CzAJBgNVBAgTAkZMMREwDwYDVQQHEwhIZWF0aHJvdzEPMA0GA1UEChMGVHJpemVu 
MREwDwYDVQQLEwhTb2Z0d2FyZTEXMBUGA1UEAxMOd3d3LnRyaXplbi5jb20xITAf 
BgkqhkiG9w0BCQEWEnphcmVtYmFAdHJpemVuLmNvbTAeFw0wMTEwMjAwMDAwNTZa 
Fw0wMjEwMjAwMDAwNTZaMIGNMQswCQYDVQQGEwJVUzELMAkGA1UECBMCRkwxETAP 
BgNVBAcTCEhlYXRocm93MQ8wDQYDVQQKEwZUcml6ZW4xETAPBgNVBAsTCFNvZnR3 
YXJlMRcwFQYDVQQDEw53d3cudHJpemVuLmNvbTEhMB8GCSqGSIb3DQEJARYSemFy 
ZW1iYUB0cml6ZW4uY29tMIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEA 
yldagYx3PusRi1olOskdNX9YtnYAw+GL/uL+VyZb6qIqDQdiUnzZIHEQKCtMGcwN 
Gc6IFU78aDfR8Hxf5D5mwe3uzlBh9zO4N9dZgKvW6B9eDuvY8EVuLuFq3JvZS5Wj 
v9W3IwVf//2wauDyF/i/Vs+C8DcJLvV/iDLXgJVmAMJknum/nLBiz2rmNvdiANyB 
gQJpiyAmESYAVcOpOhr5uuHDfxlmERpP14Ca3Vyhryp+se/T92sbhahupMBGufd4 
fJ00O0JvuSuP4Wim6GETW4bUCvDIJuTvoN9Mq6Gq7IVmtEzJDCRY32xWguz/U26/ 
5UIzNGGeExwA6VWC8edDbQIDAQABo4HtMIHqMB0GA1UdDgQWBBQkmWA4HTAJeAO4 
N3K9lIBpf8FUVTCBugYDVR0jBIGyMIGvgBQkmWA4HTAJeAO4N3K9lIBpf8FUVaGB 
k6SBkDCBjTELMAkGA1UEBhMCVVMxCzAJBgNVBAgTAkZMMREwDwYDVQQHEwhIZWF0 
aHJvdzEPMA0GA1UEChMGVHJpemVuMREwDwYDVQQLEwhTb2Z0d2FyZTEXMBUGA1UE 
AxMOd3d3LnRyaXplbi5jb20xITAfBgkqhkiG9w0BCQEWEnphcmVtYmFAdHJpemVu 
LmNvbYIBADAMBgNVHRMEBTADAQH/MA0GCSqGSIb3DQEBBAUAA4IBAQCcn/7S9wQZ 
/YytEEAnIXShIvwIRKeJF1Qj7IBN1nLRQclctZFs3tveLYPt2xr+AXcrgIq07JPN 
ev33qpCxrBBDcpV5OSYHftZV7Ah3dbjR2Jb95nMWBIXONcZkeMbGjQjY7wMLnHvB 
8E3vwTWdmVSFfFs7JT2BNhphuT5kuhqo6NEaHNtA9vKZGPBGJrgLF8PoXCk0J8vR 
L5WP8z5Kqe1o4/9BT1WD0re6NtUh36XB1rNZfVuR01HshMNah5VL6UXRi5/pdttZ 
uKdwIWpSs1YPIhR4MxFkHm4xif++pdN69ld6RHOpFs/1IS5rCEwBYrEPoSxjV7ud 
QCAx3UW8vk6x 

 -----END CERTIFICATE-----

 
Thi f signed certificates, very simple with all the information 
ncoded between the BEGIN CERTIFICATE and the END CERTIFICATE.  At this 

s is very standard stuff for sel
e
point you have successfully created your CA Public Certificate and your CA Private Key 
files which should be kept in the c:\CARoot\private directory. 
 

 
This document is to be used in conjunction with Visual SSL and should not be transmitted in any form. 

19 



Creating Your Own Certificate Authority 
 

 
Creating a NEW Public Certificate and Key Pair 
 
At this point you have a very basic CA structure but you can create certificates and sign 
them with your organization.  We are going to walk you through creating a key pair: 
 
1) Create a new Key file using the genrsa.exe command: 
 
 C:\CARoot>genrsa –out cert.key –rand private\.rnd 2048 
 
2) Or Create a new Key file with a password using the genrsa command: 
 
 C:\CARoot>genrsa –out cert.key –rand private\.rnd –des3 2048 
 

f all goes well your should see something similar to the above screen shot.  It is 
ers; 

get 

) Create a Public Certificate using the req.exe command as detailed in the screen shot: 

 
I
HIGHLY recommended that you use passwords to encrypt your key files for serv
however, there is no reason for client files to be encrypted with a password.  If you for
your password you will have to recreate your certificate. 
 
3

 
This document is to be used in conjunction with Visual SSL and should not be transmitted in any form. 

20 



Creating Your Own Certificate Authority 
 

If all goes well you should see the above screen shot.  Note the questions that were asked 
and how they match with the openssl.cnf file modified earlier.  You may at anytime open 
this configuration file and change the defaults.  At this point you should have a cert.key 
and a cert.crt file in your CARoot directory.  If these files do not exist, double check your 
work and try again.  You should note that the new cert.crt file has not been signed and is 
very similar to the CA certificate at this point.  The next step is to sign the certificate with 
your CA key file. 
 
4) Sign the certificate using the following command: 

 
C:\CARoot>ca –ss_cert cert.crt –key private\ca.key –config openssl.cnf –policy 
policy_anything –out signedcert.crt 
 

Note:  Do not use the cert.key as this is the newly generated Key (use it for generating a 
public key, not signing the key), you must use the CA Key file generated earlier to 
establish the certificate chain.   
 

In the above if we did not use the –policy policy_anything switch to accept the 
certificate as it currently exists the ca.exe command would complain.  Once you have 
signed the certificate, one will be located in your newcerts directory as a record of the 
transaction with the serial number and a .pem extension i.e. 01.pem.  For each newly 
signed certificate, your newcerts directory will be updated, increasing the index 
number for each new certificate.  The other location is in the CARoot directory and is 
the signedcert.crt file as specified in the –out parameter.  Use this file, along with the 
cert.key file, in your OpenSSL applications. 
 

Note: You may delete certificates the index.txt file if you want to recreate or resign the 
certificates.  You may also change the sequence number in the serial file. 
 
You should see a lot of information fly by when you issue the above command and then 
you should be asked if you want to sign the certificate?  Just press Y and then press enter.  
You will then be asked if you want to “commit” the file.  Just press Y and then press 
enter. You should see more information fly by and finally end with “database updated.” 
 
 
 

 
This document is to be used in conjunction with Visual SSL and should not be transmitted in any form. 

21 



Creating Your Own Certificate Authority 
 

 
The above screen shot represents the typical “signing” process.  If you did not see 
something similar to the above, then repeat the steps making sure you followed the 
examples explicitly.  
 
If you check the newcerts directory you should see a new certificate in the directory with 
a 01.pem filename (may be a different number, but it will be the highest).  If you look at 
the file you should see something similar to the following: 
 

Data: 
        Version: 3 (0x2) 
        Serial Number: 1 (0x1) 
        Signature Algorithm: md5WithRSAEncryption 
        Issuer: C=US, ST=FL, L=Heathrow, O=Trizen, OU=Software, 
CN=www.trizen.com/Email=zaremba@trizen.com 
        Validity 
            Not Before: Oct 20 00:02:05 2001 GMT 
            Not After : Oct 20 00:02:05 2002 GMT 
        Subject: C=US, ST=FL, O=Trizen, OU=Software, 
CN=www.trizen.com/Email=zaremba@trizen.com 
        Subject Public Key Info: 
            Public Key Algorithm: rsaEncryption 
            RSA Public Key: (2048 bit) 
                Modulus (2048 bit): 
                    00:ca:57:5a:81:8c:77:3e:eb:11:8b:5a:25:3a:c9: 
                    1d:35:7f:58:b6:76:00:c3:e1:8b:fe:e2:fe:57:26: 
                    5b:ea:a2:2a:0d:07:62:52:7c:d9:20:71:10:28:2b: 
                    4c:19:cc:0d:19:ce:88:15:4e:fc:68:37:d1:f0:7c: 
                    5f:e4:3e:66:c1:ed:ee:ce:50:61:f7:33:b8:37:d7: 
                    59:80:ab:d6:e8:1f:5e:0e:eb:d8:f0:45:6e:2e:e1: 
                    6a:dc:9b:d9:4b:95:a3:bf:d5:b7:23:05:5f:ff:fd: 
                    b0:6a:e0:f2:17:f8:bf:56:cf:82:f0:37:09:2e:f5: 
                    7f:88:32:d7:80:95:66:00:c2:64:9e:e9:bf:9c:b0: 
                    62:cf:6a:e6:36:f7:62:00:dc:81:81:02:69:8b:20: 

 
This document is to be used in conjunction with Visual SSL and should not be transmitted in any form. 

22 



Creating Your Own Certificate Authority 
 

                    26:11:26:00:55:c3:a9:3a:1a:f9:ba:e1:c3:7f:19: 
                    66:11:1a:4f:d7:80:9a:dd:5c:a1:af:2a:7e:b1:ef: 
                    d3:f7:6b:1b:85:a8:6e:a4:c0:46:b9:f7:78:7c:9d: 
                    34:3b:42:6f:b9:2b:8f:e1:68:a6:e8:61:13:5b:86: 
                    d4:0a:f0:c8:26:e4:ef:a0:df:4c:ab:a1:aa:ec:85: 
                    66:b4:4c:c9:0c:24:58:df:6c:56:82:ec:ff:53:6e: 
                    bf:e5:42:33:34:61:9e:13:1c:00:e9:55:82:f1:e7: 
                    43:6d 
                Exponent: 65537 (0x10001) 
        X509v3 extensions: 
            X509v3 Basic Constraints:  
                CA:FALSE 
            Netscape Comment:  
                OpenSSL Generated Certificate 
            X509v3 Subject Key Identifier:  
                24:99:60:38:1D:30:09:78:03:B8:37:72:BD:94:80:69:7F:C1:54:55 
            X509v3 Authority Key Identifier:  
                
keyid:24:99:60:38:1D:30:09:78:03:B8:37:72:BD:94:80:69:7F:C1:54:55 
                
DirName:/C=US/ST=FL/L=Heathrow/O=Trizen/OU=Software/CN=www.trizen.com/Email=zar
emba@trizen.com 
                serial:00 
 
    Signature Algorithm: md5WithRSAEncryption 
        7c:18:87:74:ad:a1:c3:90:55:af:27:f4:87:0c:4a:bb:5a:0d: 
        f1:87:a4:2d:dc:a4:c1:16:c3:02:21:9b:4c:56:61:fe:ce:a1: 
        4a:cb:fc:de:92:57:c6:87:63:38:ba:de:56:d6:3a:62:4c:c5: 
        cb:41:75:44:61:f5:f7:d9:fa:9f:ab:35:9e:c3:90:96:b1:0b: 
        1a:47:b3:4d:2c:15:60:e0:95:ed:98:b4:31:8a:7e:77:f3:41: 
        0e:05:91:f4:1e:1d:fd:74:e6:7c:61:b7:16:f6:ec:a9:b7:d1: 
        aa:b0:23:e1:42:8a:c5:50:b3:c8:a9:f3:69:d5:49:1e:95:d3: 
        21:12:ba:6a:e9:35:f2:c5:74:15:d9:a7:d5:71:47:9a:a3:fe: 
        5b:11:14:50:fe:d9:eb:76:f2:21:1e:88:ac:7c:4e:ea:19:f8: 
        74:d8:0f:0b:97:af:3c:ce:95:79:b5:6a:b0:67:c0:0c:33:3a: 
        fd:32:9d:a1:4c:0b:6e:21:b5:de:c4:e6:2f:6d:07:70:7d:31: 
        0c:3f:7d:b6:4d:ac:d7:3e:94:4c:1c:26:a2:19:1e:ee:ff:da: 
        73:73:49:38:c0:32:9e:22:8c:ed:d2:1f:3c:50:ba:89:df:d6: 
        a5:ab:df:52:a2:79:7f:e0:91:d7:6a:45:44:9a:6a:d3:bc:a0: 
        c0:18:ba:c0 
-----BEGIN CERTIFICATE----- 
MIIEnjCCA4agAwIBAgIBATANBgkqhkiG9w0BAQQFADCBjTELMAkGA1UEBhMCVVMx 
CzAJBgNVBAgTAkZMMREwDwYDVQQHEwhIZWF0aHJvdzEPMA0GA1UEChMGVHJpemVu 
MREwDwYDVQQLEwhTb2Z0d2FyZTEXMBUGA1UEAxMOd3d3LnRyaXplbi5jb20xITAf 
BgkqhkiG9w0BCQEWEnphcmVtYmFAdHJpemVuLmNvbTAeFw0wMTEwMjAwMDAyMDVa 
Fw0wMjEwMjAwMDAyMDVaMHoxCzAJBgNVBAYTAlVTMQswCQYDVQQIEwJGTDEPMA0G 
A1UEChMGVHJpemVuMREwDwYDVQQLEwhTb2Z0d2FyZTEXMBUGA1UEAxMOd3d3LnRy 
aXplbi5jb20xITAfBgkqhkiG9w0BCQEWEnphcmVtYmFAdHJpemVuLmNvbTCCASIw 
DQYJKoZIhvcNAQEBBQADggEPADCCAQoCggEBAMpXWoGMdz7rEYtaJTrJHTV/WLZ2 
AMPhi/7i/lcmW+qiKg0HYlJ82SBxECgrTBnMDRnOiBVO/Gg30fB8X+Q+ZsHt7s5Q 
YfczuDfXWYCr1ugfXg7r2PBFbi7hatyb2UuVo7/VtyMFX//9sGrg8hf4v1bPgvA3 
CS71f4gy14CVZgDCZJ7pv5ywYs9q5jb3YgDcgYECaYsgJhEmAFXDqToa+brhw38Z 
ZhEaT9eAmt1coa8qfrHv0/drG4WobqTARrn3eHydNDtCb7krj+FopuhhE1uG1Arw 
yCbk76DfTKuhquyFZrRMyQwkWN9sVoLs/1Nuv+VCMzRhnhMcAOlVgvHnQ20CAwEA 
AaOCARkwggEVMAkGA1UdEwQCMAAwLAYJYIZIAYb4QgENBB8WHU9wZW5TU0wgR2Vu 
ZXJhdGVkIENlcnRpZmljYXRlMB0GA1UdDgQWBBQkmWA4HTAJeAO4N3K9lIBpf8FU 
VTCBugYDVR0jBIGyMIGvgBQkmWA4HTAJeAO4N3K9lIBpf8FUVaGBk6SBkDCBjTEL 
MAkGA1UEBhMCVVMxCzAJBgNVBAgTAkZMMREwDwYDVQQHEwhIZWF0aHJvdzEPMA0G 
A1UEChMGVHJpemVuMREwDwYDVQQLEwhTb2Z0d2FyZTEXMBUGA1UEAxMOd3d3LnRy 

 
This document is to be used in conjunction with Visual SSL and should not be transmitted in any form. 

23 

aXplbi5jb20xITAfBgkqhkiG9w0BCQEWEnphcmVtYmFAdHJpemVuLmNvbYIBADAN 



Creating Your Own Certificate Authority 
 

BgkqhkiG9w0BAQQFAAOCAQEAfBiHdK2hw5BVryf0hwxKu1oN8YekLdykwRbDAiGb 

TFZh/s6hSsv83pJXxodjOLreVtY6YkzFy0F1RGH199n6n6s1nsOQlrELGkezTSwV 
YOCV7Zi0MYp+d/NBDgWR9B4d/XTmfGG3FvbsqbfRqrAj4UKKxVCzyKnzadVJHpXT 

IRK6auk18sV0Fdmn1XFHmqP+WxEUUP7Z63byIR6IrHxO6hn4dNgPC5evPM6VebVq 

sGfADDM6/TKdoUwLbiG13sTmL20HcH0xDD99tk2s1z6UTBwmohke7v/ac3NJOMAy 
niKM7dIfPFC6id/WpavfUqJ5f+CR12pFRJpq07ygwBi6wA== 
-----END CERTIFICATE-----  

 
 
If you look in the index.txt file in the c:\CARoot directory you should see the certificate 

formation as a single line item.  If you look in the serial file you should see “02” which 

ate.  

wever, if you want to install this 
ertificate in Windows then you must make some changes as documented in Adjusting 

n it 

KCS#12 Certificates in Internet Information Server.  You may 
ptionally issue the following command in the MS-DOS prompt to create a Certificate 

 
:\CARoot>req –newkey rsa:1024 –keyout private\dummy.key –out  

private\dummy.pem –config openssl.cnf 

hority 
erefore 

 Internet Information Server.  After getting the 
ertificate Signing Request file (or after creating it) you can issue the following 

 
:\CARoot>ca –in certreq.txt –key private\ca.key –out newcerts\mycert.cer –policy  

in
represents the next certificate index (01 is the above certificate).   
 
You should now distribute this newly created signedcert.crt file as the signed certific
This certificate will work in the OpenSSL environment and will function properly with 
any application that uses the OpenSSL libraries; ho
c
the Certificates for Windows Operating Systems. 
 
Signing Certificate Requests (Being a Certificate Authority) 
In the previous example we demonstrated the signing of self signed “dummy” 
certificates.  In this section we will show you how to take a certificate request and sig
with your credentials.  Similar to Verisign, or Thawte, you create a certificate request 
usually from Internet Information Server and send it to them to “sign” and return the 
signed certificate for your use.  Creating a certificate request from IIS is discussed in 
section Creating P
o
Signing Request: 

C

 
 
Note, that in order to create certificate requests, you have to have a Certificate Aut
setup.  This is sometimes very tough for those who don’t want to be a CA.  It is th
recommended to create them from
C
command to sign the certificate: 

C
policy_anything –config openssl.cnf  

 
This document is to be used in conjunction with Visual SSL and should not be transmitted in any form. 

24 



Creating Your Own Certificate Authority 
 

 
Note that the only difference between signing self-signed certificates and certificate 
request are the –ss_cert and –in switches respectively. 
 

 
This document is to be used in conjunction with Visual SSL and should not be transmitted in any form. 

25 



Creating Your Own Certificate Authority 
 

 
Adjusting the Certificates for Windows Operating Systems 
 
Windows does not understand the .pem file as first created by OpenSSL.  Windows does 
understand .crt files.  You may have noticed that when you sign a certificate, its contents 
change, you don’t just have the BEGIN CERTIFICATE and END CERTIFICATE you 
have all the information at the top as well.  If you merely change the extension of the 
.pem file to .crt and then double click the file, Windows will give you an error.  You must 
delete the entire contents of the file except for the data between and including the BEGIN 
CERTIFICATE and the END CERTIFICATE (similar to the self signed CA certificate 
above).  Go ahead and right mouse click on the newly created signedcert.crt file and open 
the file with WordPad. 
 

 is best to use WordPad when opening certificate files as NotePad will display all of the 

  

w 

hen you do delete the header information, and then, if necessary, change the extension 

 
It
extra ASCII character codes and make editing the certificate difficult.  Once the file has 
opened in WordPad, delete everything except for the data between and including the 
BEGIN CERTIFICATE and the END CERTIFICATE making sure that the BEGIN 
CERTIFICATE line is the first line and the END CERTIFICATE line is the last line.
Save the file (don’t worry if you mess up, you can recreate the certificate again, and 
optionally delete the entry from the index.txt file and serial file).  Your file should no
look very similar in nature to the ca.crt file. 
 
W
from .pem to .crt, you can then double click on the file you should see the following 
noting that your information may be slightly different: 

 
This document is to be used in conjunction with Visual SSL and should not be transmitted in any form. 

26 



Creating Your Own Certificate Authority 
 

 
You do have the option of installing the certificate into the Windows certificate database 
of certificates to trust, but is not necessary at this time.  If you check the other tabs, you 
will notice all of the data you have entered for this signed certificate as well as 
information about the issuer which is the CA.  You will also notice that Windows cannot 
find any information on this certificate.  We will install the CA certificate in the next 
section. 
 
Installing the CA Certificate into the Windows Operating System 
 
For any signed certificate, you must take out the header information and have only the 
BEGIN CERTIFICATE and END CERTIFICATE information such as the information 
presented in the Creating the CA Certificate section.  Open up the ca.crt file in the 
c:\CARoot\private directory by right mouse clicking on the file and then opening it up 
with WordPad.  Make sure it looks like a standard certificate with no header information 
just ------BEGIN CERTIFICATE----- and ------END CERTIFICATE ----------. 
 
If the CA certificate conforms with Windows .crt formatting, then you can simply double 
click on the certificate.  When the dialog pops up, similar to the above screen shot, press 
the Install Certificate… button: 

 
This document is to be used in conjunction with Visual SSL and should not be transmitted in any form. 

27 



Creating Your Own Certificate Authority 
 

 
 
After pressing the Install Certificate… button you see the following dialog box: 
 

 
This document is to be used in conjunction with Visual SSL and should not be transmitted in any form. 

28 



Creating Your Own Certificate Authority 
 

 
 
Just Press Next > to continue 
 

 
 

 
This document is to be used in conjunction with Visual SSL and should not be transmitted in any form. 

29 



Creating Your Own Certificate Authority 
 

In the above dialog I have selected the “Place all certificates in the following store” and 
then pressed the Browse… button.  When the Select Certificate Store popped up, I 
selected the “Trusted Root Certificate Authorities” store and pressed Ok.  Press Next > to 
continue.  You should see the following dialog: 
 

 
 
Just Press Finish… to complete the process: 
 

 
 
Press Yes to continue and install the certificate.  You have now installed the CA Root 
certificate as a trusted Certificate Authority.  The next step will be to install any public 
certificates that have been signed by the CA Root certificate.   You may notice something 
different the next time you double click on the CA certificate (ca.crt): 
 
 
 

 
This document is to be used in conjunction with Visual SSL and should not be transmitted in any form. 

30 



Creating Your Own Certificate Authority 
 

 
 
In the above image, Windows now has some information to work with, unlike the first 
time we double clicked on the CA Certificate.  If you then click on the Certification Path 
tab at the top you will see that Windows now says the certificate path is Ok as well. 
 
At this point create and sign a certificate, and then double click on the .crt file of the 
newly created signed certificate in the c:\CARoot\newcerts directory (you may have to 
change the name to have a .crt extension and also remove the header information).  If you 
followed the directions in the Creating a New Public Certificate and Key Pair then 
you already have a certificate that you can simply double click on (making sure you made 
it compatible for windows).  You should see the following dialog: 
 

 
This document is to be used in conjunction with Visual SSL and should not be transmitted in any form. 

31 



Creating Your Own Certificate Authority 
 

 
 
Notice that you have not installed this certificate.  It is already trusted, because it’s root 
certificate is trusted which is the CA Certificate that was installed earlier.  If you click on 
the Certification Path tab you will see the certificate chain: 

 
This document is to be used in conjunction with Visual SSL and should not be transmitted in any form. 

32 



Creating Your Own Certificate Authority 
 

 
 
Notice that the Root certificate for this newly created and signed certificate is the 
www.trizen.com (Common Name) certificate.  If you click on this, then you can view the 
CA certificate. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
This document is to be used in conjunction with Visual SSL and should not be transmitted in any form. 

33 

http://www.trizen.com/


Creating Your Own Certificate Authority 
 

 
Using Internet Explorer to Install the Certificate 
 
An alternate way to install certificates is to use Internet Explorer which will allow you to 
install .pem files (assuming they have been modified to conform to Windows parsing) or 
any other files that conform to PEM or x509 structure. 
 
Open up Internet Explorer and from the menu bar select Tools | Internet Options.  When 
you select the Content tab you should see the following: 

 
When the above dialog appears (assuming you’re using Internet 5.0) click on the 
Certificates… button.  You should get the following dialog: 
 

 
This document is to be used in conjunction with Visual SSL and should not be transmitted in any form. 

34 



Creating Your Own Certificate Authority 
 

 
 
Certificate Chaining 
 
From here you can see all of the Trusted Root Certificates (Certificate Authorities).  If 
one of these CA has signed a certificate that your computer is validating, the root will be 
accepted.  The root certificate is at the top of the chain for any signed certificates.  This 
goes hand in hand with certificate chaining, whereas there can be many Certificate 
Authorities, each one positioning itself in the certificate chain.  In this case Trizen is the 
Root certificate and any certificates we sign will have a depth of 1 (starting at 0) where 
position 0 is the signed certificate and position 1 is the Trizen Root.  If you are 
developing secure applications using Visual SSL or OpenSSL then you should review the 
material on client verification and certificate depths. 
 
Importing the CA Certificate 
 
On the above dialog, press the Import… button.  You should see the following dialog: 
 
 

 
This document is to be used in conjunction with Visual SSL and should not be transmitted in any form. 

35 



Creating Your Own Certificate Authority 
 

 
 
Just press the Next > button.  You should see the next dialog: 
 

 
 

 
This document is to be used in conjunction with Visual SSL and should not be transmitted in any form. 

36 



Creating Your Own Certificate Authority 
 

Press the Browse… button and navigate to the signed certificate you wish to import i.e. 
ca.crt in the private directory of the CARoot folder.  You may have to view *.* file 
types.  Press the Next > button to continue. 
 

 
 
You should just accept the setting in the above dialog and press the Next > button.  You 
should see the following dialog.   
 

 
This document is to be used in conjunction with Visual SSL and should not be transmitted in any form. 

37 



Creating Your Own Certificate Authority 
 

 
 
At this point it is the same as if you had double clicked on a .crt file.  Remember you 
can’t double click on .pem files and get this dialog, you must either go through Internet 
Explorer or change the name so that it has a .crt extension—making sure you have 
removed all the header information and leaving only the ------- BEGIN CERTIFICATE --
--- and the -------- END CERTIFICATE ------- data. 
 

 
This document is to be used in conjunction with Visual SSL and should not be transmitted in any form. 

38 



OpenSSL Utilities 
 

 

Using the OpenSSL Applications s_server.exe & s_client.exe 
 
Undoubtedly you will want to test your certificates.  OpenSSL provides you with a rich 
set of applications that can be found in the c:\OpenSSL\openssl-0.9.6a\out32dll\release 
directory. We have already discussed several of them in the above sections, but as a 
developer you will want to use some of the other applications to test your own SSL 
enabled applications.  Remember that these utilities are all MS-DOS based and it is 
recommended that you place a copy of command.com or cmd.exe (for NT) in the 
c:\OpenSSL\openssl-0.9.6a\out32dll\release directory. 
 
Running s_client.exe and s_server.exe 
 
We can guarantee that you will use s_server.exe at some point during your SSL 
development life cycle.  This is a great utility that will test your client’s capabilities and 
ensure that you are communicating properly.  If your client can communicate with 
s_server.exe then you can be pretty sure it will perform accurately and appropriately with 
other SSL enabled servers including https://www.verisign.com and others. 
 
Copy the server.pem and client.pem files from the C:\OpensSSL\openssl-0.9.6a\apps 
directory to the C:\OpenSSL\openssl-0.9.6a\out32dll\release directory. 
Double click on your command.com or cmd.exe file in the release directory.  When the 
command window pops up, type the following at the command prompt: 
 
 C:\OpenSSL\openssl-0.9.6a\out32dll\release>s_server –accept 4433 
 

  
 
The s_server.exe application is now ready to accept clients. At this point, stop the server 
by pressing Ctrl+C twice to exit the application.  Type in the following at the command 
prompt and press enter: 
 
 C:\OpenSSL\openssl-0.9.6a\out32dll\release>s_server -help 
 
This will bring up all of the options that can be utilized with the s_server.exe application.  
If you use none of the options the server will accept on port 4433 using server.pem as the 
certificate which will also contain the private key. Note that you can place the private key 
into the same file as the public certificate when using OpenSSL. 
 

 
This document is to be used in conjunction with Visual SSL and should not be transmitted in any form. 

39 

https://www.verisign.com/


OpenSSL Utilities 
 

If you haven’t already stopped the execution of the s_server.exe application, just press 
Ctrl and the letter C twice while still holding the Control key.  At this point copy the 
ca.key and the ca.crt file to this release directory (from CARoot\private).  Then at the 
command prompt type the following: 
 
 C:\OpenSSL\openssl-0.9.6a\out32dll\release>s_server –cert ca.crt –key ca.key 
 
This will start the s_server application with the CA Public Certificate and CA Private 
Key files that were created earlier.  If it asks for the PEM password, just type in the 
password that you made when you created the CA Key file. 
 
At this point, let the s_server.exe continue to run and double click on the 
command.com or cmd.exe (for NT) file to bring up a new MS-DOS prompt.  At the DOS 
prompt type the following: 
 

C:\OpenSSL\openssl-0.9.6a\out32dll\release>s_client–cert ca.crt –key ca.key   
 
 

 
This document is to be used in conjunction with Visual SSL and should not be transmitted in any form. 

40 



OpenSSL Utilities 
 

You should see the following: 

 
If you did not see this make sure you have placed the ca.crt and ca.key file into the same 
directory as the s_client.exe application (c:\OpenSSL\openssl-0.9.6a\out32dll\release).  
Also, you may want to add the switch –connect 127.0.0.1:4433 which represents the host 
IP and Port number of the s_server.exe application. 
 

 
This document is to be used in conjunction with Visual SSL and should not be transmitted in any form. 

41 



OpenSSL Utilities 
 

Notice the last line:  Verify return code: 18 (self signed certificate).  Which makes sense, 
the s_client.exe application will automatically attempt to verify the server’s certificate, 
which in the case of the s_server.exe application we are using the CA certificate which 
was self signed!  At this point shutdown your s_client.exe application and then the 
s_server.exe application.   
 
Copy the signed certificate signedcert.crt created earlier or 01.pem file (or whatever it is 
named in the C:\CARoot directory) to the C:\OpenSSL\openssl-0.9.6a\out32dll\release 
directory.  Copy the cert.key which was used to create the request certificate, then later 
signed —this is the public key pair (actually there are three, a publicly signed certificate, 
a request certificate and a key file).  Type in the following into one of the MD-DOS 
window command prompts: 
 
 C:\OpenSSL\openssl-0.9.6a\out32dll\release>s_server –cert signedcert.crt –key 
cert.key 
 
Your server should be up and running.  At another MS-DOS prompt (open another 
window if necessary) type in the following: 
 
 C:\OpenSSL\openssl-0.9.6a\out32dll\release>s_client –cert signedcert.crt –key 
cert.key 
 
If all has gone well then you should get another verification error?  At least you’re not 
getting the self signed certificate error “18” but is error “21” any better?  This error 
represents the problem of not being able to validate a server’s certificate using a Trusted 
Certificate Store (such as that created when installing certificates in Windows above). 

 
This has everything to do with the client’s verification process.  Basically we need to 
inform the s_client.exe application that it should look in a file for those certificates that it 
should trust!  This is accomplished by using the –CAFile switch.  Stop running the 
s_client.exe application but keep the s_server application running. 

 
This document is to be used in conjunction with Visual SSL and should not be transmitted in any form. 

42 



OpenSSL Utilities 
 

 
Creating a CAFile 
 
A CAFile is very easy to create and consists of nothing more than a bunch of public 
certificates appended to each other.  To create a CAFile, from windows right mouse click 
on the Start button.  Select the Explore pop up menu item.  When the explorer window 
pops up navigate to c:\OpenSSL\openssl-0.9.6a\out32dll\release.  In the right hand pane, 
right mouse click in the area where the release files are located, selecting New | Text 
Document.  It should now appear in the right pane awaiting for you to give it a name.  
Rename the file root.pem.  Your directory should look like the following: 
 

 
 

 
This document is to be used in conjunction with Visual SSL and should not be transmitted in any form. 

43 



OpenSSL Utilities 
 

Double click the new root.pem file to open up the text editor.  You should have a blank 
file.  Next, right mouse click on the signedcert.crt file and select Open With and either 
select WordPad if its available or select Choose Program and use the WordPad program.  
When WordPad opens up, select all the text (Edit | Select All) in the signedcert.crt file 
and then copy the selection to the clipboard (Edit | Copy): 
 

 
 
Now go to the other WordPad application which represents the blank root.pem file and 
paste this data into that file then save the file and exit.  You have successfully created a 
CAFile.  If you have not already closed the s_client.exe application do so now, then at the 
command prompt type the following: 
 

C:\OpenSSL\openssl-0.9.6a\out32dll\release>s_client –cert signedcert.crt –key 
cert.key –CAFile root.pem 

 
If all goes well, you should see the same error!  “Unable to verify the first certificate” is 

 
This document is to be used in conjunction with Visual SSL and should not be transmitted in any form. 

44 



OpenSSL Utilities 
 

not what you would probably expect, but we have only copied the signed certificate, we 
still have to copy the CA certificate (ca.crt).  Shutdown the s_client.exe application and 
copy the ca.crt certificate data to the bottom of the root.pem file using the same method 
as above.  The root.pem file should now look something similar to the following: 
 

-----BEGIN CERTIFICATE----- 
MIIExzCCA6+gAwIBAgIBBzANBgkqhkiG9w0BAQQFADCBmDELMAkGA1UEBhMCVVMx 
CzAJBgNVBAgTAkZMMREwDwYDVQQHEwhIZWF0aHJvdzEPMA0GA1UEChMGVHJpemVu 
MRwwGgYDVQQLExNTb2Z3YXJlIEVuZ2luZWVyaW5nMRcwFQYDVQQDEw53d3cudHJp 
emVuLmNvbTEhMB8GCSqGSIb3DQEJARYSemFyZW1iYUB0cml6ZW4uY29tMB4XDTAx 
MTAyMDE4MTk0M1oXDTAyMTAyMDE4MTk0M1owgYwxCzAJBgNVBAYTAlVTMQswCQYD 
VQQIEwJGTDERMA8GA1UEBxMITG9uZ3dvb2QxDDAKBgNVBAoTA1RTSTEMMAoGA1UE 
CxMDRU5HMRwwGgYDVQQDExN3d3d3LnZpc3VhbDMyNzAuY29tMSMwIQYJKoZIhvcN 
AQkBFhRyZWxhdGlvbnNAdHJpemVuLmNvbTCCASIwDQYJKoZIhvcNAQEBBQADggEP 
ADCCAQoCggEBAMduDyCEUL3XYjgECElIg4NU3ISMdOAT5l9dzgiZQ+qdkshd3x27 
3WeCq+esdeBs3dYYOEPfpxkBuEIEtu4cmJmB4CV+LJVot47w5kGJitFC3yjDLtqv 
5q/PcT/vKf5jb2DA+iw7KlOwwO7tXCTKBSStP2esMcTRWP20iuwwt5hDAGrG1h8v 
UZMQdxM93nFAhf5RkrYc1plF770M6oeU1OFS8RuMGUjpOVWbSvoUOCzMTh95FV6Z 
A1p9SA9AdPGLz3TuBcDAftXGi9kUY7VZis4yIKUh5U6VmrKSfpNhsmgeDu8l8XVt 
eiQqAG0B/oFQlv0DH3WdAAOHKe02I71FiysCAwEAAaOCASQwggEgMAkGA1UdEwQC 
MAAwLAYJYIZIAYb4QgENBB8WHU9wZW5TU0wgR2VuZXJhdGVkIENlcnRpZmljYXRl 
MB0GA1UdDgQWBBRlqnayQK4E8kcupDrR6D8wiyssMzCBxQYDVR0jBIG9MIG6gBRz 
ZbnU2CjF4Zjsk4ck9Dpm2h5j+6GBnqSBmzCBmDELMAkGA1UEBhMCVVMxCzAJBgNV 
BAgTAkZMMREwDwYDVQQHEwhIZWF0aHJvdzEPMA0GA1UEChMGVHJpemVuMRwwGgYD 
VQQLExNTb2Z3YXJlIEVuZ2luZWVyaW5nMRcwFQYDVQQDEw53d3cudHJpemVuLmNv 
bTEhMB8GCSqGSIb3DQEJARYSemFyZW1iYUB0cml6ZW4uY29tggEAMA0GCSqGSIb3 
DQEBBAUAA4IBAQAh+/rh0AUEhOgw6ejX2+N/0vxX//bBoRIfqsTydp7ImI9lrszl 
cx8yXMSX+jP6sdt34taGJVg7uJAaYL+QVXiOV97OcsEY196rYToc9QaZM6iYEQYd 
7KxohGtx59s9ehE0a+R1mWqVB/7QvE/pjXXfazYNW9WZyxTcJ8HzgsLDJYPgOkx5 
Zt4/6P4iu4nVXZdYoqiZHQBJB1X5Wcf8eDjHkgJdWRYEc8yoNHaToMGBPaO+NlNc 
KbqY1uRs+BYfK8QbjmDyjfzxI2MebDQK6tt5AOLOJ/DIGydsRCP35bPxXuDhqO+7 
E3u5HMHGL0l5Sq0Uh4KOHRNM1NceXY5bopNZ 
-----END CERTIFICATE----- 
-----BEGIN CERTIFICATE----- 
MIIEpjCCA46gAwIBAgIBADANBgkqhkiG9w0BAQQFADCBmDELMAkGA1UEBhMCVVMx 
CzAJBgNVBAgTAkZMMREwDwYDVQQHEwhIZWF0aHJvdzEPMA0GA1UEChMGVHJpemVu 
MRwwGgYDVQQLExNTb2Z3YXJlIEVuZ2luZWVyaW5nMRcwFQYDVQQDEw53d3cudHJp 
emVuLmNvbTEhMB8GCSqGSIb3DQEJARYSemFyZW1iYUB0cml6ZW4uY29tMB4XDTAx 
MTAyMDE1NDkxM1oXDTExMTAxODE1NDkxM1owgZgxCzAJBgNVBAYTAlVTMQswCQYD 
VQQIEwJGTDERMA8GA1UEBxMISGVhdGhyb3cxDzANBgNVBAoTBlRyaXplbjEcMBoG 
A1UECxMTU29md2FyZSBFbmdpbmVlcmluZzEXMBUGA1UEAxMOd3d3LnRyaXplbi5j 
b20xITAfBgkqhkiG9w0BCQEWEnphcmVtYmFAdHJpemVuLmNvbTCCASIwDQYJKoZI 
hvcNAQEBBQADggEPADCCAQoCggEBALPCypLQBuw53sRHHKuNK557iu6tibDcIKZZ 
mYCal7Sww8Jd0gdLYGAFxJ5l0PwJZVxILUbbAiUCw2jQFPjq856HaxZ6s6smwWTZ 
7piILEmbE46eKoTLkUybL3pwg43DuU6Zoizon+zNT1jwSoFGs1MMs3JdYhkuoGe8 
kCF2KxRMxyY+o+RmdjSx158zG0S5yssSn2bbOjCeZzccRzQienVvZYbVahW3wrA8 
j/oQubRhROD1jyDJRuDnZ+DvhhLxP0bdM11eUg9QQtl/ftYttL+RcgdORDB1GGV5 
ELu79ukA/2UFh7QoZaBXZdje+uo2kITb97FKtjSMOrDOn/35GQECAwEAAaOB+DCB 
9TAdBgNVHQ4EFgQUc2W51NgoxeGY7JOHJPQ6ZtoeY/swgcUGA1UdIwSBvTCBuoAU 
c2W51NgoxeGY7JOHJPQ6ZtoeY/uhgZ6kgZswgZgxCzAJBgNVBAYTAlVTMQswCQYD 
VQQIEwJGTDERMA8GA1UEBxMISGVhdGhyb3cxDzANBgNVBAoTBlRyaXplbjEcMBoG 
A1UECxMTU29md2FyZSBFbmdpbmVlcmluZzEXMBUGA1UEAxMOd3d3LnRyaXplbi5j 
b20xITAfBgkqhkiG9w0BCQEWEnphcmVtYmFAdHJpemVuLmNvbYIBADAMBgNVHRME 
BTADAQH/MA0GCSqGSIb3DQEBBAUAA4IBAQAX41RvA0Q+j1uqo2o5Tym4/BO6NSR2 
zaeAoOOnT8Sd+QHLNXpdC/Wz53tFgp1Kvkx9hwi+/wF082arpYMFaC63vSExl9v/ 
JMTiTiLcc0yC8z4XXVmgTr4CDRXurpTb4Zk6byeTxOn2pxXWFeOsEB/qIFHq+WDe 
6QXizsMZ2YO60+cP7QAfsEnW5HIf8NOS6+KM6gbkWSgYpkZz5BeSidIDOilRSaEF 

 
This document is to be used in conjunction with Visual SSL and should not be transmitted in any form. 

45 

R4Yuox83E5RzcJ6xN0JzSD5AxvkRenhMLg7p59n/o8/JoASRg6ihovhs+UEXj6Z2 



OpenSSL Utilities 
 

v+DdhwRuE/nLv5qt52jwUUj+zq1Wcinryb4QIErNaoPqlr2SyCkMlA4U 
-----END CERTIFICATE----- 

At this point you can go to the MS-DOS prompt where you stopped the s_client.exe 
application and press the up-arrow until you see the previous command.  If this does not 
work just type in the previous command and press enter.  You should see the following: 

 
This document is to be used in conjunction with Visual SSL and should not be transmitted in any form. 

46 



OpenSSL Utilities 
 

 
Notice “Verify return code: 0 (ok)” response for the client verification!  This is what we 
wanted from the beginning.  So did we need the cert.crt certificate in the root.pem?  The 
answer is no, as long as you have the top level certificate installed in the CAFile 
(root.pem) the client will return “ok.”

 
This document is to be used in conjunction with Visual SSL and should not be transmitted in any form. 

47 



OpenSSL Utilities 
 

 
 

OpenSSL Utilities 
 
S_SERVER 
s_server is a great tool for testing your SSL client applications; however, it only handles 
one request at a time, so if you’re interested in testing your applications against an SSL 
server then purchase Visual SSL for ActiveX, Delphi, or C++Builder which has a multi-
threaded blocking server and an Asynchronous non-blocking server and source code to 
match.  The following selected “switches” are available for use within s_server.  An 
example follows each switch. 
 
-accept [port]  

The TCP port the server should “listen” on.  The default is 4433. The next line 
will start a server listening on port 3000. 
s_server –accept 3000 

 
-cert [certname] 

This is the public certificate to use and can be a physical path to the certificate.  
Note that if you use a DSS cipher suite then you must use a DSS certificate as 
well as the matching private key file (see GENDSA).  If a certificate is not 
specified then the server will attempt to load server.pem in the local directory.  If 
the public and private key do not match the server will exit.   Developers should 
note that if a DSS certificate is specified then only DSS clients will be accepted 
and is the same for RSA certificates and RSA clients.  
s_server –accept 3000 –cert c:\CARoot\private\ca.crt  

 
-key [keyfile]  

This is the private key file to use and can be a physical path to the certificate.  If 
no key file is presented then the server will attempt to load the key from the 
certificate file (key file data and certificate data can exist in the same file).  If no 
key data can be found the server will attempt to load “server.pem.”  Developers 
should provide their own public and key files as described above.  Servers must 
have a public and private key file and it is preferred to encrypt the key file as 
described earlier.  Notice you can use complete paths or relative paths. 
s_server –key c:\CARoot\private\ca.key –cert c:\CARoot\private\ca.crt 

 
-no_tmp_rsa 

Some export (EXP) cipher suites generate a temporary RSA key.  By setting this 
option no temporary RSA key will be created.  Consequently, a client that only 
supports EXP type cipher suites may fail the handshake and not be able to 
connect.  Developers, when using client connections should try to connect first 
with a US domestic cipher. 
s_server –no_tmp_rsa –accept 3000 –cert ca.crt –key ca.key 

 

 
This document is to be used in conjunction with Visual SSL and should not be transmitted in any form. 

48 



OpenSSL Utilities 
 

 -verify [depth], -Verify [depth]  
As discussed earlier, a client’s certificate can be requested by the server for 
verification.  By using the –verify [value] the client’s certificate is requested with 
a certificate chain depth specified by [value] but will not shutdown if the client 
doesn’t present a certificate.  The –Verify [depth] switch is the same as the 
lowercase version but will shutdown the connection if the certificate is not 
presented for verification.  As mentioned earlier, the certificate chain represents 
the number of Certificate Authorities that have “signed” the certificate and then 
the actual issued certificate.  By setting the [depth] integer value, developers can 
set the maximum number of CA’s that are in the chain including the issued 
certificate.  Most certificate chains will have 1 or 2 CA’s. 
s_server –Verify 1 –cert ca.pem –key key.pem –accept 2000 

 
-CApath [directory]  

This switch represents a directory where the acceptable certificates are kept, 
usually within a CA directory structure.  The important thing to note is this 
directory must have the perl script utility c_rehash (in tools directory of 
OpenSSL) run regularly on the certificates in the directory.  It is easier for 
Windows developers to utilize the –CAFile [file] switch. 
s_server –Verify 1 –CAPath c:\CARoot\certs 

 
-CAfile [file] 

This switch points to the file that contains a list of all acceptable certificates and 
acceptable Certificate Authorities.  See earlier discussion on client verification on 
how to create this file.  
s_server –CAFile c:\CARoot\root.pem 

  
-state  

This option will display each SSL protocol step in the handshake upon the 
acceptance of a client connection.  
s_server –state –accept 4433 –cert ca.crt –key ca.key 

 
-debug 

selecting this option/switch will produce an exorbitant amount of information on 
the client connection including a hex dump.  This option is best if analyzing the 
entire protocol from start to finish and is best used with NT’s cmd.exe DOS 
prompt. 
s_server –debug –accept 4433 –no_tmp_rsa 

 
-nbio  

This switch turns on non-blocking connections which don’t block execution until 
a read/write is performed.  Non-blocking connections are usually associated with 
asynchronous event notification and are used primarily for non serialized 
connections such as a chat program.  Non-blocking connections continuously call 
Accept until the client connection is accepted. 
s_server –accept 4000 –nbio 

 
This document is to be used in conjunction with Visual SSL and should not be transmitted in any form. 

49 



OpenSSL Utilities 
 

  
-quiet  

This is basically the opposite of any “debug” switches turning all reporting of the 
client connections off. 
s_server –accept 3000 –quiet 
 

-ssl2, -ssl3, -tls1, -no_ssl2, -no_ssl3, -no_tls1 
These switches disable or enable the use of certain SSL or TLS protocols. For 
example, the –ssl3 switch will force only SSL version 3 connections.  SSL 
version 3 is probably the most widespread with respect to new technologies and 
should be used most of the time.  The TLSv1 is basically the same as SSL version 
3 and is gaining acceptance rapidly. 
s_server –accept 3000 –ssl3 

 
-bugs  

This switch will enable workarounds for known SSL or TLS bugs. 
s_server –bugs 

  
-cipher [cipherlist]  

This option will set the server’s acceptable ciphers.  If not specified, the server 
will default to accepting any of the available ciphers in the OpenSSL library; 
however, you may want to test a server or client’s ability or inability to find a 
“shared cipher.”  If utilized, upon the client’s initial connection the first matching 
pair between the client and server (using the client’s list) will be selected.  If the 
server does not support any of the client’s preferred ciphers, the connection will 
be closed with “no shared ciphers.”  Acceptable ciphers should be “colon” 
delimited.   
s_server –accept 443 –cipher EXP-RC4-MD5:RC4-MD5 

 
-www  

Use this option to check a web browser’s connection to the server.  The server 
will return the connection information back to the web browser in HTML format.  
After starting the server using an RSA certificate, developers can enter 
https://127.0.0.1:4433 into the browser to see the connection information returned 
from the server assuming the server and the web browser are on the same 
machine. 
s_server –accept 4433 –www 

 
This document is to be used in conjunction with Visual SSL and should not be transmitted in any form. 

50 

https://127.0.0.1:4433/


OpenSSL Utilities 
 

 

 
 
-WWW  

This switch will emulate a web server and return the request page if it exists in the 
server’s executable directory.  For instance if http://127.0.0.1:4433/page.html is 
requested, then page.html will be returned if it exists in the server’s executable 
directory.  Developers should make sure that the file first exists before making 
this test. 

 
-rand [file(s)] 

This switch specifies the location of a file that has random data within it or 
multiple files that can be used to seed the random number generator.  If multiple 
files are specified then Windows users must use a “;” semicolon delimiter.  It has 
been reported that hacking can be achieved by generating the same random 
number and it is recommended to use something such as a bit map file.   
s_server –accept 443 –cert cert.pem –key key.pem –rand .rnd 

 
This document is to be used in conjunction with Visual SSL and should not be transmitted in any form. 

51 

http://127.0.0.1:4433/page.html


OpenSSL Utilities 
 

 
s_server runtime commands 
These commands can be entered into your server during its execution: 
 
Key Description 
Q By entering a single ‘q’ this will end the current SSL connection. 
Q Enter this to close the current connection and exit the server. 
R This will renegotiate the SSL client connection. 
R This will renegotiate the SSL client connection and request the client’s certificate. 
P send some plain text down the underlying TCP connection: this should cause the 

client to disconnect due to a protocol violation. 
S print out some session cache status information 
 
 
 
S_CLIENT 
s_client is a great utility for testing your SSL servers and has a number of options that 
will make debugging your applications a little easier.  The following selected switches 
will help you make your applications SSL compliant: 
 
-connect [host:port] 

This switch is used to connect to the specified host.  If no host is specified then 
the client will default to 127.0.0.1 port 4433. 
s_client –connect 127.0.0.1:4433 –cert ca.crt –key ca.key 

  
-cert [cert file]  

This will specify the public certificate to use during an SSL handshake.  This is 
only needed if the server requests a client’s certificate.  It should be noted that 
most http servers do not request a certificate and as such the default for s_client is 
no certificate. 
s_client –connect 127.0.0.1:4433 –cert cert.pem –key cert.key 

  
-key [keyfile]  

Like the s_server –key switch, this switch will load the private key file.  If no key 
file is used the client application will attempt to use the public certificate.  If the 
public certificate does not contain any private key information then client will not 
use a certificate. 
s_client –connect 127.0.0.1:4433 –cert ca.crt –key ca.key 

 
-verify [depth]  

This specified the server’s certificate chain depth to use and turns on the server 
certificate verification process. The [depth] specifies the maximum number of 
CA’s that can be present in the server’s certificate chain, which will usually be 1 
or 2.  Even if a server’s certificate fails the verification process, the connection is 
still made.  In order to verify the certificate completely developers must also use 
the CAFile switch to load the CA’s that are trusted and the associated certificates 

 
This document is to be used in conjunction with Visual SSL and should not be transmitted in any form. 

52 



OpenSSL Utilities 
 

to trust in order to get a complete Ok from the verification process as discussed 
earlier. 
s_client –connect 127.0.0.1:3000 –verify 2 –cert c:\CARoot\cert.pem 

 
-CApath [directory]  

This switch represents a directory where the acceptable server certificates are 
kept, usually within a CA directory structure.  The important thing to note is this 
directory must have the perl script utility c_rehash (in tools directory of 
OpenSSL) run regularly on the certificates in the directory.  It is easier for 
Windows developers to utilize the –CAFile [file] switch. 
s_client –verify 2 –CAPath c:\CARoot\certs. 

 
-CAfile [file]  

This switch points to the file that contains a list of all the acceptable server 
certificates and acceptable Certificate Authorities.  See earlier discussion on client 
verification on how to create this file.  
s_client –CAFile c:\CARoot\root.pem 

 
-reconnect  

This switch will connect to the server 5 consecutive times and is useful for minor 
stress testing and session cache testing. 
s_client –reconnect –connect 127.0.0.1:443 

 
-showcerts  

This will display the complete server certificate chain.  Normal connection will 
only show the server’s certificate information. 
s_client –connect 127.0.0.1:3000 –showcerts 

 
-state  

This option will display each SSL protocol step in the handshake upon the 
acceptance of a client connection.  
s_client –state –connect 127.0.0.1:4433 –cert ca.crt –key ca.key 
 

-debug  
Selecting this option/switch will produce an exorbitant amount of information on 
the server connection including a hex dump.  This option is best if analyzing the 
entire protocol from start to finish and is best used with NT’s cmd.exe DOS 
prompt. 
s_client –debug –connect 127.0.0.1:4433 
 

-nbio  
This switch turns on the non-blocking connection type, which doesn’t block 
execution while waiting for a read/write.  Non blocking connections are usually 
associated with asynchronous event notification and are used primarily for non 
serialized connections such as a chat program.  Non-blocking connections 
continuously call Accept until the client connection is accepted. 

 
This document is to be used in conjunction with Visual SSL and should not be transmitted in any form. 

53 



OpenSSL Utilities 
 

s_client –connect 127.0.0.1:4000 –nbio 
 
-quiet  

This is basically the opposite of any “debug” switches turning all reporting of the 
client connections off. 
s_client –connect 127.0.0.1:3000 –quiet 
 

-ssl2, -ssl3, -tls1, -no_ssl2, -no_ssl3, -no_tls1 
These switches disable or enable the use of certain SSL or TLS protocols. For 
example, the –ssl3 switch will force only SSL version 3 connections.  SSL 
version 3 is probably the most widespread with respect to new technologies and 
should be used most of the time.  The TLSv1 is basically the same as SSL version 
3 and is gaining acceptance rapidly. 
s_client –accept 3000 –ssl3 

 
-bugs  

This switch will enable workarounds for known SSL or TLS bugs. 
s_client –bugs 

  
-cipher [cipherlist]  

This option will set the client’s preferred ciphers in order of preference.  If not 
specified, the client will default to presenting any of the available ciphers in the 
OpenSSL library; however, you may want to test a server or client’s ability or 
inability to find a “shared cipher.”  If utilized, upon the client’s initial connection 
the first matching pair between the client and server (using the client’s list) will be 
selected.  If the server does not support any of the client’s preferred ciphers, the 
connection will be closed with “no shared ciphers.”  Acceptable ciphers should be 
“colon” delimited.   
s_client –connect 127.0.0.1:443 –cipher EXP-RC4-MD5:RC4-MD5 
 

-rand [file(s)] 
This switch specifies the location of a file that has random data within it or 
multiple files that can be used to seed the random number generator.  If multiple 
files are specified then Windows users must use a “;” semicolon delimiter.  It has 
been reported that hacking an encrypted session can be achieved by generating the 
same random number and it is recommended to use something such as a bit map 
file.   
s_client –connect 127.0.0.1:443 –cert cert.pem –key key.pem –rand .rnd 

 

 
This document is to be used in conjunction with Visual SSL and should not be transmitted in any form. 

54 



OpenSSL Utilities 
 

 
 
ASN1PARSE 

The ASN1Parse utility will take either a PEM (Privacy Enhanced Mail RFC1422) 
or DER (Distinguished Encoding Rules) public certificate and parse the certificate 
information, displaying the information.  The PEM format consists of the DER 
base64 encoding while the standard DER format is compatible with RFC2459; 
both of which are based on the ASN.1 (Abstract Syntax Notation 1) and include 
X.509 information as well.  There are several options that can be used but the 
most useful are as follows: 
 
-in [certificate] 
This options specifies the certificate file.  The default certificate format is PEM 
and as such the –inform and –in file must match. 
 
-inform [PEM | DER] 
This option sets the type of file that will be parsed. 

 
 asn1parse –in ca.pem –inform PEM 
 
DSAPARAM 

This utility is useful for generating DSA parameter files.  DSA, as opposed to 
RSA, utilizes the Digital Signature Algorithm now known as the Digital Signature 
Standard (DSS) and can only use SHA-1 whereas RSA can utilize SHA-1 and 
MD5 digest algorithms.  It is really only important to know that a DSA/DSS 
client cannot communicate with an RSA server.  There is really only one reason 
to use this utility and it is to create the DSA parameter file, which can then be 
used to create a DSA key pair. 
 
-out [file] 
This specifies the out file that will have the DSA parameters.  The out file will 
default to a PEM format unless DER is specified in the –outform. 
 
-outform [PEM | DER] 
This switch specifies the type of out file to create. 

  
[number] 
This is not a switch but a parameter and represents the number of bits to use when 
generating the parameters.  This must be the last parameter in the command. 

 
-rand [file(s)] 
This switch specifies the location of a file that has random data within it or 
multiple files that can be used to seed the random number generator.  If multiple 
files are specified then Windows users must use a “;” semicolon delimiter.  It has 
been reported that hacking an encrypted session can be achieved by generating the 

 
This document is to be used in conjunction with Visual SSL and should not be transmitted in any form. 

55 



OpenSSL Utilities 
 

same random number and it is recommended to use something such as a bit map 
file or a privately used file that has random data. 

 
 dsaparam –outform PEM –out dsaparams.pem –rand .rnd 512 
 
GENDSA 

This utility will generate a DSA (Digital Signature Algorithm) key from a DH 
parameters file that has been created using the DSAPARAM utility.  
 
-out [file] 
This specifies the out file name of the DSA generated private key file. 
 
-des, -des3, -idea 
This switches/options represent the encryption format for the key.  To encrypt the 
key select one of the above algorithms or leave the key file unencrypted.  This 
will prompt the user for a password. 
 
-rand [file(s)] 
This switch specifies the location of a file that has random data within it or 
multiple files that can be used to seed the random number generator.  If multiple 
files are specified then Windows users must use a “;” semicolon delimiter.  It has 
been reported that hacking an encrypted session can be achieved by generating the 
same random number and it is recommended to use something such as a bit map 
file or a privately used file that has random data. 
 
dsaparam-file 
A command line parameter rather than a switch, this selects the DSA parameters 
file to use when generating the DSA key.  The DSA parameters file be created 
using the DSAPARAM utility. 
 
gendsa –out dsa.key –des3 –rand c:\private\.rnd dsaparam.pem 

 
RAND 

This utility will generate a random byte file for use with the –rand switch in most 
of the OpenSSL applications.  Many times it is just as good to use a file such as a 
picture, or word document to seed the random number generator during the 
openssl commands; however, for simplicity it may be easier to always use the 
same random bytes file. 
 
-out [file] 
This sets the file to create which will have the random bytes.  In the OpenSSL 
documentation and for Certificate Authority management, this file typically 
consists of only the extension .rnd. 

 
-rand [file(s)] 

 
This document is to be used in conjunction with Visual SSL and should not be transmitted in any form. 

56 



OpenSSL Utilities 
 

This switch specifies the location of a file that has random data within it or 
multiple files that can be used to seed the random number generator.  If multiple 
files are specified then Windows users must use a “;” semicolon delimiter.  It has 
been reported that hacking an encrypted session can be achieved by generating the 
same random number and it is recommended to use something such as a bit map 
file or a privately used file that has random data. 
[num] 
This parameter, rather than a switch, sets the number of random bytes to create 
and place into the file.  It is recommended to have this file at least 1K or 1024 
bytes. 
 

 C:\>rand –out .rnd 1024 
 

Windows developers should note that usually the only way to open a .rnd file is to 

 

ERIFY

  
 

edit the file from within a DOS prompt by using the edit .rnd command. 

 
V  

s utility will verify the presented certificate similar to the certificate 
 and 

 
-CAFile [file] 

 is the CAFile to use when building the certificate chain.  The 
chain built up by starting with the selected certificate and ending with the 

Thi
verification process that occurs during the SSL handshake where a client
server both verify each other if requested.  Developers can use this utility to 
extract the code from the verification process as outlined below: 

This parameter

 
This document is to be used in conjunction with Visual SSL and should not be transmitted in any form. 

57 



OpenSSL Utilities 
 

CARoot.  A certificate is self signed if the certificate and certificate root are th
same.  If a match between the certificate and the CAFile is found, then the 
certificate if verified ok. 

[certificate1 certificate2

e 

 
 .. certificateN] 

This specifies the certificates to validate/verify. 

 c:\CARoot\newcert.crt 

sult of zero (0).  If you have followed the examples for creating a certificate and 

ey whose public certificate is NOT in the root.pem file and has not been signed.  

nts the possible errors, defined by the OpenSSL API, that 
an be received during the verification process and in fact can be seen in the 

 
 

 
C:\>OpenSSL verify –CAfile c:\CARoot\root.pem

 
Notice that the return value was OK.  This means the certificate returned a verify 
re
adding your CA root certificate to the root.pem file specified above then you 
should have similar results.  Another possible result could be the following: 

 
In this example, we have selected to verify a certificate that was generated from a 
k
This error is typical of “dummy” certificates, created but not signed.  Other errors 
may be a certificate that has been signed, but the issuer is not in the root.pem 
CAfile specification. 
 
The following represe
c
Visual SSL event OnVerifyError: 

 

 
This document is to be used in conjunction with Visual SSL and should not be transmitted in any form. 

58 



OpenSSL Utilities 
 

Code Defined Long Description 
0 X 09_V_OK The operation was successful. 5
2 X509_V_ERR_UNABLE_TO_GET_ISSUER_CERT  rtificate could not 

e 

The issuer ce
be found: this occurs if the 
issuer certificate of an 
untrusted certificate cannot b
found. 
The CRL of a certificate could 
not be 

4 X509_V_ERR_UNABLE_TO_DECRYPT_CERT_SIGNATURE 
 means 

 

the certificate signature could 
not be decrypted. This
that the actual signature value 
could not be determined rather
than it not matching the 
expected value, this is only 
meaningful for RSA keys. 
The CRL signature could not be
decrypted: this means tha
actual signature value 
could not be determined rather 
than it not matching the
expected value. Unused. 
The public key in the 
certificate SubjectPubli
could not be read. 

X The signature of the certificate 
is invalid. 

8 X509_V_ERR_CRL_SIGNATURE_FAILURE 
 Unused. 

The signature of the certificate 
is invalid. 

9 X509_V_ERR_CERT_NOT_YET_VALID The certificate is not yet 
valid: the notBefore date is 
after the current time. 
The CRL is not yet valid. 
Unused. 

11 X509_V_ERR_CERT_HAS_EXPIRED The certificate has expired
that is 

: 
the notAfter date is 

before the current time. 
The CRL has expired. Unused. 
the certificate notBefore
contains an invalid time. 

14 X509_V_ERR_ERROR_IN_CERT_NOT_AFTER_FIELD the certificate notAfter field 
contains an invalid time. 

15 X509_V_ERR_ERROR_IN_CRL_LAST_UPDATE_FIELD the CRL lastUpdate field 
contains an invalid time. 
Unused. 
the CRL nextUpdate field 
contains
Unused. 
an error occurred trying to
allocate
never happen. 
the passed certificate is self
signed and the
cannot be found in the list of 
trusted certificates. 
the certificate chain could be 

3 X509_V_ERR_UNABLE_TO_GET_CRL 
 found. Unused. 

5 X509_V_ERR_UNABLE_TO_DECRYPT_CRL_SIGNATURE 
 
 

 
t the 

 

6 X509_V_ERR_UNABLE_TO_DECODE_ISSUER_PUBLIC_KEY 
 cKeyInfo 

7 509_V_ERR_CERT_SIGNATURE_FAILURE 

10 X509_V_ERR_CRL_NOT_YET_VALID 

12 X509_V_ERR_CRL_HAS_EXPIRED 
13 X509_V_ERR_ERROR_IN_CERT_NOT_BEFORE_FIELD  field 

16 X509_V_ERR_ERROR_IN_CRL_NEXT_UPDATE_FIELD 
 an invalid time. 

17 X509_V_ERR_OUT_OF_MEM  
 memory. This should 

18 X509_V_ERR_DEPTH_ZERO_SELF_SIGNED_CERT  
 same certificate 

19 X509_V_ERR_SELF_SIGNED_CERT_IN_CHAIN 

 
This document is to be used in conjunction with Visual SSL and should not be transmitted in any form. 

59 



OpenSSL Utilities 
 

built up using the untrusted 
certificates but the root could 
not be found locally. 
the issuer certificate of a 
locally looked up cert
could not be found. This 
normally means the list of 
trusted certificates is no
complete. 
no signatures could be verifi
because th
one certificate and it is not 
self signed. 
the certificate chain length is
greater than 
maximum depth. Unused. 
the certificate has been 
revoked. Unused. 

24 X509_V_ERR_INVALID_CA a CA certificate is invali
Either it is not 

d. 
a CA or its 

extensions are not consistent 
with the supplied purpose. 
the basicConstraints pathlength
parameter has been exceeded

26 X509_V_ERR_INVALID_PURPOSE the supplied certificate cannot 
be used for the specified 
purpose. 
the root CA is not marked a
trusted f
purpose. 
the root CA is marked to re
the speci

29 X509_V_ERR_SUBJECT_ISSUER_MISMATCH 
d because 

 

 

the current candidate issuer 
certificate was rejecte
its subject name did not match
the issuer name of the current 
certificate. Only displayed when
the -issuer_checks option is 
set. 
the current candidate issuer 
certi
its subject key identifier was
present and did not match the 
authority key identifier current
certificate. Only displayed whe
the -issuer_checks option is 
set. 
the current candidate issuer 
certi
its issuer name and serial 
number was present and did not 
match the authority key 
identifier of the current 
certificate. Only display
the -issuer_checks option i
set. 

20 X509_V_ERR_UNABLE_TO_GET_ISSUER_CERT_LOCALLY 
ificate 

t 

21 X509_V_ERR_UNABLE_TO_VERIFY_LEAF_SIGNATURE ed 
e chain contains only 

22 X509_V_ERR_CERT_CHAIN_TOO_LONG  
the supplied 

23 X509_V_ERR_CERT_REVOKED 

25 X509_V_ERR_PATH_LENGTH_EXCEEDED  
. 

27 X509_V_ERR_CERT_UNTRUSTED s 
or the specified 

28 X509_V_ERR_CERT_REJECTED ject 
fied purpose. 

30 X509_V_ERR_AKID_SKID_MISMATCH 
ficate was rejected because 

 

 
n 

31 X509_V_ERR_AKID_ISSUER_SERIAL_MISMATCH 
ficate was rejected because 

ed when 
s 

 
This document is to be used in conjunction with Visual SSL and should not be transmitted in any form. 

60 



OpenSSL Utilities 
 

32 X509_V_ERR_KEYUSAGE_NO_CERTSIGN 
ficate was rejected because 

t 

the current candidate issuer 
certi
its keyUsage extension does no
permit certificate signing. 
an application specific error. 
Unused. 

 

50 X509_V_ERR_APPLICATION_VERIFICATION 

 
enc 

he ENC utility will encrypt and decrypt files using the selected algorithm.  The 
format is typically the following: 

ons] 
Or 

ns] 

his option sets the file to decrypt or encrypt. 

his option sets the output file.  

his option will add a salt (random) value to the encryption.  It is advised to use 
tion when encrypting files. 

ncrypt the specified data file.  This is the default. 

ecrypt the specified data file 

e supported ciphers that can be used when 
ncrypting or decrypting data.  

T

 
C:\>OpenSSL [ciphername] [opti
 
C:\>OpenSSL enc [ciphername] [optio
 
-in [filename] 
T
 
-out [filename] 
T
 
-salt 
T
this op
 
-e 
E
 
-d 
D
 
The following list represents th
e
 
Cipher Description 
base64 Base 64 
  
 bf-cbc Blowfish in CBC mode 
 Bf lias for bf-cbc A
 bf-cfb Blowfish in CFB mode 
 bf-ecb  mode Blowfish in ECB
 bf-ofb Blowfish in OFB mode 
  
 cast-cbc CAST in CBC mode 
 Cast lias for cast-cbc A
 cast5-cbc            CAST5 in CBC mode
 cast5-cfb de CAST5 in CFB mo
 cast5-ecb           CAST5 in ECB mode 
 cast5-ofb CAST5 in OFB mode 

 
This document is to be used in conjunction with Visual SSL and should not be transmitted in any form. 

61 



OpenSSL Utilities 
 

  
 des-cbc DES in CBC mode 
 des lias for des-cbc A
 des-cfb DES in CBC mode 
 des-ofb  DES in OFB mode
 des-ecb DES in ECB mode 
  
 des-ede-cbc         EDE in CBC mode Two key triple DES 
 des-ede lias for des-ede A
 des-ede-cfb Two key triple DES EDE in CFB mode 
 des-ede-ofb  EDE in OFB mode Two key triple DES
  
 des-ede3-cbc  Three key triple DES EDE in CBC mode
 des-ede3 lias for des-ede3-cbc A
 des3 Alias for des-ede3-cbc 
 des-ede3-cfb E CFB mode Three key triple DES ED
 des-ede3-ofb E in OFB mode Three key triple DES ED
  
 desx DESX algorithm. 
  
 idea-cbc CBC mode IDEA algorithm in 
 idea ame as idea-cbc s
 idea-cfb IDEA in CFB mode 
 idea-ecb  IDEA in ECB mode
 idea-ofb IDEA in OFB mode 
  
 rc2-cbc 128 bit RC2 in CBC mode 
 rc2                 lias for rc2-cbc A
 rc2-cfb 128 bit RC2 in CBC mode 
 rc2-ecb 128 bit RC2 in CBC mode 
 rc2-ofb 128 bit RC2 in CBC mode 
 rc2-64-cbc 64 bit RC2 in CBC mode 
 rc2-40-cbc 40 bit RC2 in CBC mode 
  
 rc4                128 bit RC4 
 rc4-64 4 bit RC4 6
 rc4-40 40 bit RC4 
  
 rc5-cbc in CBC mode RC5 cipher 
 rc5                 lias for rc5-cbc A
 rc5-cfb RC5 cipher in CBC mode 
 rc5-ecb RC5 cipher in CBC mode 
 rc5-ofb RC5 cipher in CBC mode 
 
 

 
This document is to be used in conjunction with Visual SSL and should not be transmitted in any form. 

62 



OpenSSL Utilities 
 

 
In the above example we have chosen to encrypt a Word document using the rc4 
cipher with a salt.  The size of the file is the document you are reading and is 
approximately 22MB.  This encryption only takes a few seconds to complete.  
The next example shows the decryption of the same file. 
 
C:\>OpenSSL rc4 –d –in OpenDocEnc.doc –out OpenDocDec.doc 
 

version 
This utility will return the OpenSSL version being utilized. 
 
-a 
All information concerning the OpenSSL library. 
 

  
 
 
PKCS12  
 

This utility will create (PKCS#12) Personal Information Exchange (.pfx) files 
mostly used with Microsoft tools such as Internet Information Server.  If you have 
ever gone through the process of getting an SSL certificate from Verisign or 
Thawte, then this is the certificate you will likely receive.  You may therefore 
utilize the PKCS12 application to generate an SSL certificate for development 
purposes, remembering that the world according to most browsers will not accept 

 
This document is to be used in conjunction with Visual SSL and should not be transmitted in any form. 

63 



OpenSSL Utilities 
 

your certificate unless it has been “signed” by one of the root certificates in your 
CA Trusted Roots list.  To see the trusted roots in Windows go to Start | Run  and 
type in “mmc” and press enter.  This should bring up the Microsoft Management 
Console as seen in the next screen shot: 
 
 

 
ou don’t see exactly what is shown above, don’t worry, screens will differ 

  
If y
depending on the number of  “snap-ins” you have loaded.  To see the Trusted 
Root Certificates using the MMC select File | Add/Remove snap-in.  The 
following dialog should appear: 
 

 
This document is to be used in conjunction with Visual SSL and should not be transmitted in any form. 

64 



OpenSSL Utilities 
 

 
Press the Add… button in the bottom right corner to bring up the next dialog box 
as shown in the next screen shot: 

 
This document is to be used in conjunction with Visual SSL and should not be transmitted in any form. 

65 



OpenSSL Utilities 
 

 

 
From this dialog, navigate to the Certificates Snap and then press the Add button.  
You should now see the following dialog: 
 

This document is to be used in conjunction with Visual SSL and should not be transmitted in any form. 
66 



OpenSSL Utilities 
 

In the previous dialog make sure you select “Computer account” which will 
provide you all the certificates and lists for this computer, not just a user.  Press 
the Next > button after making this selection.  You should now see the following 
dialog: 
 

 
 
Make sure you select “Local computer:  (the computer this console is running 
on)” and press the Finish button.  This will take you to a prior screen at which 
point you should press the “Close” button or “Ok” button on all windows until 
you are back at the main Microsoft Management Console. 
 
In the main MMC (Microsoft Management Console) you should now have the 
Certificates snap-in displayed in the left pane of the window.  Your screen should 
now look something similar to the following.  Pay close attention to the Trusted 
Root Certificate Authorities: 
 

 
This document is to be used in conjunction with Visual SSL and should not be transmitted in any form. 

67 



OpenSSL Utilities 
 

 
In the above right side pane notice that there are 108 certificates that this 
computer will trust.  If you want to add your certificate to this list, right mouse 
click on the Certificates folder and select All Tasks | Import and go through the 
same process as shown earlier in section Installing the CA Certificate into the 
Windows Operating System  making sure you are importing the proper format 
type of your certificate.  For the PKCS#12 certificate format continue with this 
section. 
 
Creating PKCS#12 Certificates in Internet Information Server 
 
This part is the same process that will be utilized to create a Certificate Signing 
Request (CSR) that you would send to a Certificate Authority such as Verisign or 
Thawte.  To begin with you must make sure you Internet Information Server 5.0 
which comes with Windows 2000 or XP.  Windows NT4 users can usually follow 
the same steps but it may be slightly different.  To begin with go to Start | Control 
Panel and double click on the Administrative Tools.  In the Administrative Tools 
windows select Internet Information Services which will bring up the MMC with 
the IIS snap-in already loaded.  Navigate to the Default Web Site in the left pane 
and right mouse click on the icon which should bring up the following pop up 
menu: 

 
This document is to be used in conjunction with Visual SSL and should not be transmitted in any form. 

68 



OpenSSL Utilities 
 

 
When you select the properties for the Default Web Site you should be presented 
with a tabbed dialog of the options for this site.  Windows Workstations should 

 a 
note that they are limited to only the default web site whereas Windows Servers 
can have several web sites, of which one is usually an SSL enabled site utilizing
PKCS#12 certificate!  Your screen, after selecting the Properties option, should 
look similar to the following: 
 

 
This document is to be used in conjunction with Visual SSL and should not be transmitted in any form. 

69 



OpenSSL Utilities 
 

 
In this above dialog make sure you have selected the Directory Security tab and 
then the Server Certificate button.  You should see the following dialog: 

 
This document is to be used in conjunction with Visual SSL and should not be transmitted in any form. 

70 



OpenSSL Utilities 
 

Press the Next > button on the previous screen shot if you have not already done 
so.  You should see the next dialog.  Select “Create a new certificate” and press 
the Next > button. 

 

 

 
This document is to be used in conjunction with Visual SSL and should not be transmitted in any form. 

71 



OpenSSL Utilities 
 

Select the  “Prepare the request now, but send it later” option to create a Public 
Key pair and its associated Certificate Signing Request (CSR).  You won’t be able 
to view the key and public certificate immediately, but you will be able to view 
the CSR when you complete the whole process.  We will discuss exporting the 
public key pair later in this section.  If you have not already done so, press the 
Next > button: 
 

 

 
This document is to be used in conjunction with Visual SSL and should not be transmitted in any form. 

72 



OpenSSL Utilities 
 

 
In the above dialogs select an easy to remember name with a bit length of 1024.  
If you have created a Public Key pair earlier using OpenSSL, this looks very 
familiar.  Make sure you select the “Select cryptographic service provider (CSP) 
for this certificate.”  This will be important if using Authenticode and other 
technologies.  After pressing the Next > button, make sure you select Microsoft 
RSA Schannel Cryptographic Provider and press the Next > button. 
 
Schannel is Microsoft’s answer to OpenSSL without the source code and open 
environment.  This is commonly referred to as the CyptoAPI by Microsoft and is 
almost always found as a Dynamic Link Library.   
 

 
This document is to be used in conjunction with Visual SSL and should not be transmitted in any form. 

73 



OpenSSL Utilities 
 

 
Add your information in the edit boxes provided in the above dialog.  Don’t 
worry if you make a mistake, you can always go back.  Its only important when 
you are ready to send this information to a Certificate Authority. 
 

 

 
This document is to be used in conjunction with Visual SSL and should not be transmitted in any form. 

74 



OpenSSL Utilities 
 

In the above dialog box place in your fully qualified domain name
www.trizen.com or if you’re only interested in testing, use local
Next > button to complete the information regarding your certificate. 

 such as 
host.  Press the 

 
After filling in your information press the Next > button: 

 
This document is to be used in conjunction with Visual SSL and should not be transmitted in any form. 

75 



OpenSSL Utilities 
 

Select the filename and directory location where you would like to save your 

en you press the Next > 
Certificate Signing Request.  We typically save them near or in the CARoot 
directory created at the beginning of this document.  Wh
button you should see the following dialog: 

 
Press the Next > button to complete the certificate creation process. 

 
This document is to be used in conjunction with Visual SSL and should not be transmitted in any form. 

76 



OpenSSL Utilities 
 

Once you press the Finish button on the previous dialog, you should be taken 
back to the tabbed properties dialog for the Default Web Site.  Press Cancel to 
return to the Internet Information Services Management Console.  So where is the 
certificate and key file?  It has been captured into the Microsoft Certificate’s snap 
in.  If you recall from the earlier discussion on locating all the Trusted Root 
Certificate Authorities by using the Certificates snap-in then you can easily export 
the certificate and key file from this utility as shown below: 
 

 
Notice that the certificate we just created is contained in the Certificate 
Enrollment Requests | Certificates files.  Just right mouse click on the actual 
certificate in the right pane and select Export… to actually export the certificate. 

 
This document is to be used in conjunction with Visual SSL and should not be transmitted in any form. 

77 



OpenSSL Utilities 
 

 
Press the Next > button to continue the export process. 

 
Make sure you select “Yes, export the private key” option. 

 
This document is to be used in conjunction with Visual SSL and should not be transmitted in any form. 

78 



OpenSSL Utilities 
 

 

 
 

Make sure you select the same options as above. 

 
ype a password for your key file making sure you don’t forget it! T

This document is to be used in conjunction with Visual SSL and should not be transmitted in any form. 
79 



OpenSSL Utilities 
 

 
 

Select the filename for the key that will be exported as well as its location and 
ress Finish to complete the press the Next > button.  On the next screen just p

process. 

 
This document is to be used in conjunction with Visual SSL and should not be transmitted in any form. 

80 



OpenSSL Utilities 
 

 
At this point you have created a .pfx file that should reside in the directory you 
selected when you exported the file.  We highly suggest you export these files 
near your CARoot directory structure.  If you merely double click on the newly 
created .pfx file Windows will bring up the certificate import wizard, just press 
cancel if this pops up because what you really want is to look at the certificate and 
the key file.  If you open the file up in WordPad you should see a lot of encrypted 
information: 

 
 

The above file is nowhere near human readable and as such needs to be parsed 
with the PKCS12 utility before the key and certificate can be viewed.  If you have 
not already done so, create a directory named IIS5 in your c:\CARoot\private 
directory and place this .pfx file into this location.  Next, open up the cmd.exe file 
or command.com file in your CARoot directory and type the following to parse 
your PKCS#12 certificate: 

 
This document is to be used in conjunction with Visual SSL and should not be transmitted in any form. 

81 



OpenSSL Utilities 
 

 
You should notice that we are parsing the localhost.pfx file that was exported 
earlier in this section.  You may have a different directory structure and as such 
your MS-DOS prompt may look slightly different; however, the above 
demonstrates the parsing and exporting of a new key and certificate file into one 
file.  In our demonstration we have copied the localhost.pfx file to the 
c:\CARoot\private\IIS5 directory and exporting the parsed file to the same 
location with the name localhost.pem.  Notice that these files are in PEM format.  
Before the file can be completely parsed you must of course type in the password 
for the encrypted file that was requested when you exported the localhost.pfx file.  
You should keep this password when prompted to enter a password for the 
localhost.pem file.  At this point you can double click on the localhost.pem file: 

 

 
This document is to be used in conjunction with Visual SSL and should not be transmitted in any form. 

82 



OpenSSL Utilities 
 

This file should look somewhat familiar by now and can be used within your 
OpenSSL applications.  OpenSSL applications allow the use of the certificate and 
the key within the same file as demonstrated by typing in the following into your 
MS-DOS prompt, assuming you have access to the OpenSSL applications via 
your PATH variable as discussed early during the install: 

 
s_client –connect www.verisign.com:443 -ssl3 –cert c:\CARoot\private\IIS5\localhost.pem 

 

 
This document is to be used in conjunction with Visual SSL and should not be transmitted in any form. 

83 



OpenSSL Utilities 
 

Your screen should be very similar to the prior screen.  If not, check your 
command and make sure you have access to the OpenSSL applications (the 
OpenSSL directory path is appended to your PATH environment variable) and the
files you are point to in the command do in fact exist and you know the passwo
The interesting thing to do this time is to issue the followin

 
rd.  

g command when the 
connection is made: 

 
GET / HTTP/1.0 

 
This command is presented in the previous screen shot near the bottom of the 
image.  This command is an HTTP request for the selected home page of the SSL 
host, in this case the Verisign home page should be returned after you press enter 
twice. 

 
You should have received the home page of http://www.verisign.com after issuing 
the above command.  HTTPS can be used with these and other commands to 
receive secure data from HTTPS servers.  This is very convenient for 
communicating with e-commerce servers.  For information on connecting to 

 
This document is to be used in conjunction with Visual SSL and should not be transmitted in any form. 

84 



OpenSSL Utilities 
 

secure credit card companies you should consider purchasing Visual SSL a
http://www.visualSSL.com. 

If you would like to separate your key and certificate file you may do the 
following.  First open the localhost.pem file and copy all the data of the certificate
section. 

t 

 

 

-----BEGIN CERTIFICATE----- 
 

MIIBzTCCAbqgAwIBAgIQJVgAkqbw4ptI23fbg50KkjAJBgUrDgMCHQUAMGkxEjAQ 
BgNVBAMTCWxvY2FsaG9zdDEQMA4GA1UECxMHVGVzdGluZzEPMA0GA1UEChMGVHJp 

EwDwYDVQQHEwhIZWF0aHJvdzEQMA4GA1UECBMHRmxvcmlkYTELMAkGA1UE 
MwHhcNMDExMjExMDQxMDUzWhcNMDIxMjExMTAxMDUzWjBpMRIwEAYDVQQD 
NhbGhvc3QxEDAOBgNVBAsTB1Rlc3RpbmcxDzANBgNVBAoTBlRyaXplbjER 

emVuMR
BhMCVV
Ewlsb2
MA8GA1UEBxMISGVhdGhyb3cxEDAOBgNVBAgTB0Zsb3JpZGExCzAJBgNVBAYTAlVT 
MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQCm9xkTPpcMmcNhDvpqpj9zLzPT 
qJCL7Yb3qf27teXZxM5lphim8XZ80QxkdJ74UNT+WLapKHD+DXmZ/0UiDUQvO2oV 
GLhyD9T3nhowwYXaK2/yegUCfpbpIDefy3AGGj/GbLiL5dIHofOX2DYg8xFOHIo+ 
EQKnat6RzRuCpo7LtQIDAQABMAkGBSsOAwIdBQADAgC+ 
-----END CERTIFICATE----- 

 
Place the copied text into a new text file in your c:\CARoot\private\IIS5 directory 
and name it localhost.crt.  Next, copy the private key data from the localhost.pem 
file: 

 
-----BEGIN RSA PRIVATE KEY----- 
Proc-Type: 4,ENCRYPTED 
DEK-Info: DES-EDE3-CBC,FC8C9D26EBCD275C 
 
Lt9KdA1IqENQzvo/Y5nmDX2dcQ2tbK4xQiQJKsbqWaUfGtYM/ZC/+zbUsLu9qCIs 
mMYZUbOBg0Xc9U5hLeVJNCiotind1ThWSf89Cr8UTpQBBts+kHtzxHNifaaVjU+n 
wTf0dg2Jtp0p1Te5Kw5VaGN8OdstCU8KYwWoAxWgD6v7N6P91Zn9DQEz7Z7KR7PD 
fWgn2PxmwhHjyTYJtZhkLKT+y/uYV/BRZQfvpbCkP1X09fdzTmHHG32xA/KuSX+C 
JsmZs9H8m0rCxWdhY4C0UvmgFmBm4WrCAl2UngoZ3uwvVSCdD79Acuk2u+hC2Hz/ 
0GY/7k7vbXyOkl9HyTql3XiDA+0yk4PFw/ANXOjB5DAqZ2qKZZzf5jZ8cjEwV6Cw 
vD64JHmre7OylQ/ATGyRvM5zQyl8g7uhSoPsnOp73drn7XvpB2gfjtFNNuJ0ckKy 
OnDxwAbnSAzjgj3P5USfJujWzsGccVvtWIYxlEe7pd56I7Q2MTC/+GJbSIoZ+jIQ 
jO/J9piQ/aWg5tiauTHFXBAiTgEykI4fkcLTucBk10BDyNIYjOF60xL/R2oBaEUF 
DAnwqbZ/AscvuuJN2J+nGkrTypMVrCoBGp+QA1ckaNiizgyr4Qn5g99AtrHYyd26 
bKhi/NcQFRLLPHYLnD8GG0nNQ3AYpt0MXS6e56LojqIRNN1/sG1wVl2IhDirfZQ1 
21zBVx5f9WpWflQesFiBWMJshv7X9WMMvGoKNJNB4eDorf4qAPxEvdcp7/31M7rF 
/u896eNQ//ipYAuEU8Ks88c5wyugQPBkcTCtyxudhvtgEddB0/1t0A== 
-----END RSA PRIVATE KEY----- 
 

Place the copied data into a new text file in your c:\CARoot\private\IIS5 directory 
and name it localhost.key.  You now have two separated files and they each can 
be used within OpenSSL applications.  Remember though that you have separated 
your public certificate and private key file and as such you must specify both for 

e of the 
e 

will demonstrate the more utilized options with the PKCS12 utility. 

any OpenSSL applications that require a certificate and key file. 
 
We have digressed from the original format slightly to demonstrate som
ways OpenSSL can be utilized in Windows operating systems.  At this point w

 
This document is to be used in conjunction with Visual SSL and should not be transmitted in any form. 

85 

http://www.verisign.com/


OpenSSL Utilities 
 

-in [filename] 
Use this option to set the PKCS#12 certificate to be processed.  The following 
command will parse the localhost.pfx and place its private key and public 

:\CARoot>pkcs12 –in localhost.pfx –out out.pem 
 

ate in 

t to use 
ove the extra header 

t file after it is created. 

 
This options really only add a little information about the process that is taking 

 –out out.pem 

 key.  

 

-noout 

 

isplayed on 

certificate into out.pem. 
 

C

-out [filename] 
Use this option to specify the output file that will hold the key and certific
one file.  
 

C:\CARoot>pkcs12 –in c:\CARoot\private\IIS5\localhost.pfx –out out.pem  
 
-nokeys 
Use this option to output only a certificate.  You will only be prompted for a 
password to the PKCS#12 file (if encrypted with

ate in windows you must rem
 a password).  If you wan

the newly created certific
information from the –ou
 

C:\CARoot>pkcs12 –in localhost.pfx –nokeys –out out.pem 
 
-info

place with the command. 
 

C:\CARoot>pkcs12 –in localhost.pfx –info
 
-des, -des3, -idea 
Use one of these options to specify the encryption algorithm to protect the
 

C:\CARoot>pkcs12 –in localhost.pfx –des3 –out.pem 
 
-nodes 
Use this option to NOT encrypt the keys.  This means the keys will not be
password protected for use.  Not recommended. 
 

C:\CARoot>pkcs12 –in localhost.pfx –nodes –out.pem 
 

Select this option to keep the utility from creating any output.  Usually used with 
–info switch. The following example demonstrates the use of sending information
about a certificate contained in the directory c:\CARoot\private\IIS to the screen. 
 

C:\CARoot>pkcs12 –in private\IIS\localhost.pfx –noout –info 
 
-password [pass:password] 
Use this option when specifying a password that must be used to access a file 
when creating a PKCS#12 file.  This format will have the password d

 
This document is to be used in conjunction with Visual SSL and should not be transmitted in any form. 

86 

http://www.visualssl.com/


OpenSSL Utilities 
 

the command line.  For example, if your password was visualssl then the format 

port –in localhost.pem –out mypkcs12.pfx  
–password pass:visualssl 

 
nkey [filename] 

n then the –in file will usually be just a certificate.  If both the 

C:\CARoot>pkcs12 –export –in private\temp.crt –inkey private\temp.key –out  

would be: 
 

C:\CARoot>pkcs12 –ex

-i
If using this optio
certificate and key file are in the same file, then just use –in file. 
 

mypkcs12.pfx 
 
-export 
Use this option to CREATE a PKCS#12 file.  You must supply at least one 
private key and one certificate usually in one file. This next example will take a 
.pfx file and parse it into a .pem file which will have the key and certificate 
contained within it encrypted. 
 
 

xt line will then take this localhost.pem file and turn it back into a 

C:\CARoot>pkcs12 –in localhost.pfx –out localhost.pem 
 
The ne
PKCS#12 file using the password that was used: 
 

C:\CARoot>pkcs12 –e xport –in localhost.pem –out mypkcs12.pfx  
–password pass:mypass 

e can be double clicked on in Microsoft Windows and 
 

tep 1) Generate a Key File

 
At this point the fil
imported into a Trusted Certificate Store.  The next example shows how to use an
lready created certificate file and a key file to generate a PKCS12 file.   a

 
S  
 
C:\CARoot>genrsa –out private\temp.key –rand private\.rnd –des3 2048 
 
Step 2) Generate a Certificate File from the above key 
 
C:\CARoot>req –new –x509 –days 3650 –key private\temp.key –out 
private\temp.crt –config openssl.cnf 
 
Step 3) Copy the Certificate File data into the temp.key file 
 

 
This document is to be used in conjunction with Visual SSL and should not be transmitted in any form. 

87 



OpenSSL Utilities 
 

 

 

This document is to be used in conjunction with Visual SSL and should not be transmitted in any form. 
88 

s you can see from the above screen shot we have pasted the temp.crt 
temp.key file.  Make sure 

ere are no lines between the dashed lines and no extra lines at the bottom. 

A
information (by opening temp.crt in WordPad) into the 
th
 
Step 4) Save the file as combined.pem 
 
Step 5) Create the PKCS#12 file 



OpenSSL Utilities 
 

From the above MS-DOS command prompt screen shot we have issued the 
following command: 
 
C:\CARoot>pkcs12 –export –in private\combined.pem –out mypkcs12.pfx 
 
If you now double click on the new mypkcs12.pfx file in the C:\CARoot directory 
you will be prompted by windows to import the file.  You can just press Cancel if 
you wish or go ahead and import the file.  If you did not get the desired results 
make sure you have followed the instructions carefully realizing that creating key 
files and certificates were covered in great detail early in this manual and are 
sometimes very tricky.   
 
Ok, here is an easier way if you don’t want to copy text from one file to another 
by simply using the generated Certificate  temp.crt and the Key file temp.key. 
 
Step 1) Generate a Key File 
 
C:\CARoot>genrsa –out private\temp.key –rand private\.rnd –des3 2048 
 
Step 2) Generate a Certificate File from the above key 
 
C:\CARoot>req –new –x509 –days 3650 –key private\temp.key –out 
private\temp.crt –config openssl.cnf 
 
Step 3) Create a PKCS#12 File from the temp.key and temp.crt 

  

itch.  
he utility would then expect the –in file to be just a certificate: 

:\CARoot>pkcs12 –export –in private\temp.crt –inkey private\temp.key –out mypkcs12.pfx 

 
The command is virtually the same as before except we are explicitly telling the 
PKCS utility that there is a separate key file through the use of the –inkey sw
T
 
C

 
This document is to be used in conjunction with Visual SSL and should not be transmitted in any form. 

89 



Authenticode and Digitally Signing Your Applications 
 

Authenticode and Digitally Signing Your Applications 
 
For tho m 
operate from within Internet Explorer even when the security is High, then you should 
sign yo
nothing
 
The pro
 

1) est from Internet Information Server (described in 
KCS#12 section) 

2) 

:\CARoot>ca –in private\IIS5\certreq.txt –key private\ca.key –out  
–policy policy_anything –config openssl.cnf 

 
3) o the 

ame place in IIS to create the certificate request.  Import the newly signed 

4) se Microsoft Management Console to export the certificate as a PKCS#12 

5)  using the PKCS12 utility: 
 

trizen.pem 

6) Separate the key portion from the newly created trizen.pem file making it 
compatible to Windows (removing everything but the ----BEGIN RSA PRIVATE 
KEY ---- and ---- END RSA PRIVATE KEY -----. 

7) Save the newly created key file to c:\CARoot\private\IIS5\trizen.key 
8) Create a PKCS#12 certificate file using the signed certificate trizen.crt and the 

exported key file trizen.key using the following command: 
 

:\CARoot\>pkcs12 –export –in private\IIS5\trizen.cer –inkey  

 
9) s. 
10) ownload the Authenticode SDK from Microsoft.com and run the signcode.exe 

11) Select your ActiveX control or .cab file to sign and use the certificate store.  It 
should have the newly imported PKCS#12 certificate.  

12) Complete the code signing process, realizing that you should let Microsoft select 
the Security Provider which should be captured already in the operating system 
during the import. 

 

se that are interested in learning how to create ActiveX controls and have the

ur ActiveX controls and applications with an Authenticode Certificate which is 
 more than a PKCS#12 signed certificate.  

cess is relatively straight forward and summarized as follows: 

Create a Certificate Requ
P
Sign the Certificate as follows: 
 
C

private\IIS\trizen.cer 

Complete the Internet Information Server certificate process by returning t
s
certificate. 
U
certificate to c:\CARoot\private\IIS5\trizen.pfx 
Parse the newly created trizen.pfx file

C:\CARoot>pkcs12 –in private\IIS5\trizen.pfx –out private\IIS5\
 

C
private\IIS5\trizen.key –out private\IIS5\newtrizen.pfx 

Double-click on the newtrizen.pfx file and import it into window
D
application. 

 
This document is to be used in conjunction with Visual SSL and should not be transmitted in any form. 

90 



Authenticode and Digitally Signing Your Applications 
 

Did you get all that?  If not here is the process in more excruciating detail.  Remember, if 
crosoft 

chnologies of Cabinet files, and ActiveX distribution.  For more information on 

ications 

ng PKCS#12 
ertificates in Internet Information Server section.  Make sure you save this file in 

c:\C
 
Sig lowing command: 
 

g  

 

 
You must make sure that you have setup your Certificate Authority structure and that 
you ust include 
the 
 
Onc e 
to conf he Certificates for 
Win
 
At this rn to the Internet Information Server security area and 
omplete the Certificate Request Process.  Return to the same location where you first 

initiated the Certificate Request.  Upon returning to this dialog you should see the 
following: 

you’re interested in learning about Authenticode, you should review the Mi
te
ActiveX distribution, safe code, digitally signed code, you should consider purchasing 
our VisualSSL product. 
 
Complete Detail of Creating Authenticode Appl
 
Create a Certificate Request using the methods described in the Creati
C

ARoot\private\IIS5\certreq.txt. 

n the certificate request using the fol

C:\CARoot>ca –in private\IIS5\certreq.txt –key private\ca.key –confi
openssl.cnf –policy policy_anything –out private\IIS5\trizen.cer 

r paths are accurate including your PATH environment variable which m
directory to the OpenSSL applications. 

e the certificate has been signed, you must make sure that you modify the certificat
orm to the Windows Operating System.  See Adjusting t

dows Operating Systems for more information. 

point you must retu
c

 
This document is to be used in conjunction with Visual SSL and should not be transmitted in any form. 

91 



Authenticode and Digitally Signing Your Applications 
 

 
 

 
Notice that IIS is waiting for the signed certificate that was created earlier.
press the Next > button and navigate to the trizen.crt file. 
 

  At this point 

 

 
This document is to be used in conjunction with Visual SSL and should not be transmitted in any form. 

92 



Authenticode and Digitally Signing Your Applications 
 

At this point press the Next > button. 
 

 
 If you do not see the above dialog after pressing the Next > button review your 
certificate by double clicking on it making sure Windows recognizes the certificate.  

fter pressing the Next > button you will likely get the following: 

 
Just press Yes to continue.  Windows will notify you that the process is complete.  You 
may have noticed that at this point you are performing the same actions to create an SSL 
server.  In fact press the Edit button in the secure communications area of the Directory 
Security Tab of the Default Web Site properties.  You should see the following dialog 
which will allow you to make your server SSL enabled: 
 

A
 

 
This document is to be used in conjunction with Visual SSL and should not be transmitted in any form. 

93 



Authenticode and Digitally Signing Your Applications 
 

 
If you select the “Require secure channel (SSL)” and press OK, your server will only 
accept secure connections!  To see this in action after you press the OK button, open up
Internet Explorer and type in https://127.0.0.1 and you should see your default web page, 
but this time the secure connection icon can be found in your web browser’s status bar.  

 

 
This document is to be used in conjunction with Visual SSL and should not be transmitted in any form. 

94 



Authenticode and Digitally Signing Your Applications 
 

You must realize that since Internet browsers have a limited list of trusted certifi
others may not be able to connect to your site because their browsers do not know of 
certificate, they will likely be prompted to continue loading the pag

cates, 
your 

e. 
 
Now back to Authenticode.  After you have completed the CSR process by first creating 
a certificate request, signing the request, and then importing the signed certificate into 
IIS, you must now export the key and certificate as a PKCS#12 file.  This is the same 
process as described in the PKCS12 Utility application and will not be repeated here, 
however, when you export the PKCS#12 certificate, make sure you export it to 
c:\CARoot\private\IIS5\trizen.pfx.  The store that it will likely be in will be in the Local 
Computer account in the Personal store, you may have to search to find your certificate, 

oking for the certificate property such as http://www.trizen.com which is usually the 
ommon name of the server. 

 
 
After you successfully exported the Key and Certificates (by right mouse clicking on the 
certificate and selecting export) into a PKCS#12 file (trizen.pfx) you must now parse the 
file so that you can have an independent key file by first issuing the following command: 
 
C:\CARoot>pkcs12 –in private\IIS5\trizen.pfx –out private\IIS5\trizen.pem 
 

he above command will export the key associated with the certificate that was created 
long with the certificate request.  We had to export it in this format to get it out of the 

Windows operating system.  Your file should look similar to: 
 

lo
c
 

T
a

 
This document is to be used in conjunction with Visual SSL and should not be transmitted in any form. 

95 



Authenticode and Digitally Signing Your Applications 
 

 
This document is to be used in conjunction with Visual SSL and should not be transmitted in any form. 

96 

 
Notice that in the above file the property of Microsoft RSA Schannel Cryptographic 
Provider.  This can only be accomplished by creating a certificate from within IIS and 
selecting this option during the creation phase. 

us information.  
our key should look like the following: 

 
At this point you must separate the private key from the rest of the file by following the 
similar approach to separating certificates manually from the extraneo
Y
 
-----BEGIN RSA PRIVATE KEY----- 
Proc-Type: 4,ENCRYPTED 
DEK-Info: DES-EDE3-CBC,5033140785338CC4 
 
N8dl29OX+jriUUkrjZkQbTezr6Rm7/FtIVqje4mKt89uf8uIlQIICGV2yV8z0myv 
Gl/ig+C2ZKQ2tLuZPN0j4EpJMddjSYEsFHL/KZlSNcOhBEaA8LW5UXxWQj+Cm0Mj 
IePYUUqroRPXAsAJsPcgWlD9ic1H+hnUsYUsJXaXsDT5lVHVoeclHTjL3FclCZDr 
an1nIpv+KOqF/zYlRnbgjkIJXoHK2RSrLwk7h4ZPKHQEbBaf/970GMhwxVBTb3HB 
j2bAYzjO5oXwSspy2bugts9XQFEJhyFw3vI9B85hmZtl8mUO+92seadn54R1uJwn 
HKrW6OvJ2cIU3h/OS8VhFO+BF1Yy6rTJ7Hxy32Y127sCbEeDHG73QxJKo8eupjlw 
fEzGo2hhb2cwW5Gg5nvk6ki1C4TelJpRxkxwAeRGysd+bwP5XWegfz+MMoNcE3+o 
3a90E0Qi/vjp/fkbrjpwn62DSIwEypi7CkStFfrGxkWsV7HPkQUrnZWFCptE0w8b 
0qoI1D3EslvC3a/e4XotrpVnQQAiE+Ljln7/IN6k+/96TxKTGeFK/RnCRsiPwTvr 
rNEzbrWtS2guxFhDWrJHoNBJM8qW3sp+Gd1MW4L2jTEMSZO0pjCtU9wsGt2uPh+v 
YU2Y2iBwlDCbDFlM17yqZdniVduExrR80HkmEBi4gzp8FmUwNu8J2Gm/bhEi5D8n 
H+GXTVaagcEx2HfofdwM5PoXwLocugIGKlXjxo9wZA9OxqYoUDmE64+PMMhFmFJF 
SMCWUZixmtxTB8obRr5fcePSzgOYJTHnejqPD/pHC9U= 
-----END RSA PRIVATE KEY----- 



Authenticode and Digitally Signing Your Applications 
 

 
This document is to be used in conjunction with Visual SSL and should not be transmitted in any form. 

97 

Save this key information to c:\CARoot\private\IIS5\trizen.key.  We now have several 
files that will be utilized: 
 
 

File Description 
Certreq.txt Our IIS Certificate Request 
Trizen.cer The Signed Certificate by our CA 
Trizen.key The Exported key of the Certificate Request.  From Trizen.pem 
Trizen.pfx The Exported PKCS#12  
Trizen.pem The Parsed file of the PKCS#12 file.  Certificate and Key. 

 
 
We must now build a PKCS#12 file which will be imported into Windows.  Type the 
following command to create a new PKCS#12 certificate: 
 
C:\CARoot>pkcs12 –export –in private\IIS5\trizen.cer –inkey private\IIS5\trizen.key  

-out private\IIS5\NewTrizen.pfx 
 

to begin the Certificate 
mport Wizard.  Just continue until you get to the following dialog: 

 
 

 
This PKCS#12 file must now be imported into windows.  Simply double click on the 
newly created NewTrizen.pfx file.  Windows will prompt you 
I



Authenticode and Digitally Signing Your Applications 
 

 

 
 

ype in the password for your private key, this was set when you issued your certificate 
p or 

T
request.  Also, check the “Mark this key as exportable.  This will allow you to back u
transport your keys at a later time.”  Press Next > to continue the import process: 

This document is to be used in conjunction with Visual SSL and should not be transmitted in any form. 
98 



Authenticode and Digitally Signing Your Applications 
 

Make sure you place the certificate into the Personal Store by browsing for its location.  
Press Next > to continue the process.  The next dialog will finish the process.  Just press 

inish, or Ok to complete the import. 

You now have all the items you need to successfully add a digital signature to your 
applications.  At this point you should have already created your ActiveX controls and 
either packed them into a Microsoft Cabinet file or left them as an .ocx ready for 
distribution over the internet.  In order to completely utilize your application in Internet 
Explorer without those irritating dialogs, you must mark your application as “safe” using 
and you must use Authenticode.  Both of which still don’t guarantee safety, but do give 
your customers a better feeling.   
 
If you have not already done so, download Microsoft’s Authenticode SDK at 
http://msdn.microsoft.com/downloads/

F
 

 where you should look for Authenticode.  
ownload your version.  Once you have the SDK installed you need to run the 

.  
For inf Internet Explorer ActiveX control, you should 
purchase VisualSSL for information. 
 

 
Press the Next > button to continue the Digital Signature process. 
 

D
signcode.exe application only after you have built your ActiveX control or Cabinet file

ormation on building a successful 

 
This document is to be used in conjunction with Visual SSL and should not be transmitted in any form. 

99 



Authenticode and Digitally Signing Your Applications 
 

 

 
In this dialog, locate your ActiveX control (.ocx) or in the example’s case, your 
Microsoft Cabinet file.  This is the application you are signing.  Many times you will 
have to sign multiple cabinet files.  Press Next > to continue: 
 

This document is to be used in conjunction with Visual SSL and should not be transmitted in any form. 
100 



Authenticode and Digitally Signing Your Applications 
 

Since our certificate is already contained in our Personal Certificate store, choosing eithe
the Typical or Custom option will have the same result; however, for those that are 
importing a file, you must use the Cus

r 

tom option.  After pressing the Next > button you 
ould press the “Select from Store” button (this will be the only option if you selected 

ake sure 

sh
Typical). 
 

 
If all has gone well you should see the PKCS#12 certificate imported earlier.  Select this 
certificate by pressing the OK button.  If you did not see this in your dialog, m
you have followed the directions exactly as outlined.  Press Next > to continue the code 
signing process. 
 
 
 
 
 
 

 
This document is to be used in conjunction with Visual SSL and should not be transmitted in any form. 

101 



Authenticode and Digitally Signing Your Applications 
 

 
When your Authenticode certificate is presented to the end user, the information 
type into the above dialog will also be presented with a hypertext link to your site.  Pre
Next > to continue. 

that you 
ss 

 
This document is to be used in conjunction with Visual SSL and should not be transmitted in any form. 

102 



Authenticode and Digitally Signing Your Applications 
 

The timestamp dialog offers you an opportunity to timestamp your certificates to 
letely optional and 

 dialog which 

 
Press the Finish button to complete the process.  Your code has now been Digitally 
signed by your Certificate Authority.  Remember this is not the only step to make your 
controls simple for download use when Internet Explorer’s security settings are high.  For 
an in depth look at creating ActiveX controls for use over the Internet check out our 
website at http://www.trizen.com. 
 
 
 
 
 
 
 
 
 

differentiate them if necessary and discourage forgeries.  This is comp
if desired type the following into the edit box: 
 

http://timestamp.verisign.com/scripts/timstamp.dll 
 

After pressing the Next > button you will be presented with the following
will complete the code signing process: 
 

 
This document is to be used in conjunction with Visual SSL and should not be transmitted in any form. 

103 



Summary 
 

Summary 
 
OpenSSL is a great implementation and as far as an open source product goes, offers a 
great toolkit!  This document is intended for use with the Visual SSL product from Trizen 
Systems which offers custom SSL components utilizing the OpenSSL libraries for Delphi 
and Borland C++ Builder.  It was our intent not to show the theory behind SSL, because 
as anyone can tell you there is a lot of theory on the subject, but rather to demonstrate 
how SSL is actually used within Windows.  If you would like to get more information 
please visit http://www.openssl.org for a good bit of information as well as looking in the 
C:\OpenSSL\openssl-0.9.6a\docs directory for information on commands and 
applications.   
 
It goes without saying, but by only experimenting with SSL can you really learn about 
what the product can accomplish.  We highly suggest you play with the switches for the 
s_client and s_server applications. 
 
We hope you will carry the torch for the OpenSSL project and implement SSL into all of 
your applications.  For implementation examples you can purchase the Visual SSL source 
code and/or the Visual 3270 source code for your review. 
 

 
This document is to be used in conjunction with Visual SSL and should not be transmitted in any form. 

104 



Index 
 

Index 
 
.rnd....................................................................13 
ActivePerl...........................................................8 
ActiveX ............................................................86 
Applications 

Digitally Signing..........................................86 
ASN1PARSE 

utility............................................................51 
Authenticode ....................................................86 
Authenticode SDK............................................87 
Building the OpenSSL Libraries ........................5 
ca 21, 88 
Cabinet Files 

Microsoft .....................................................97 
CAFile ..............................................................42 

Creating .......................................................40 
certificate................................................16 
Certificate 

with Internet Explorer..................................33 
Certificate Authority..4, 5, 13, 14, 19, 24, 29, 53, 

65, 71, 88, 100 

...................................14 
Certificate Chaining..........................................34 
Certificate Enrollment Requests.......................74 
Certificate Request 

process .........................................................88 
Certificate Requests..........................................24 

Signing.........................................................24 
Certificates 

Adjusting for Windows................................25 
Authenticode................................................87 
Certificate Request in IIS.............................73 
Creating DSS ...............................................53 
DSS..............................................................52 
exporting......................................................74 
generating ....................................................84 
Importing .....................................................34 
Installing into Wndows................................26 
Internet Information Server SSL..................60 
PKCS#12 .....................................................60 
PKCS#12 in IIS ...........................................65 
Public and Private Key Pair .........................20 
self signed ....................................................19 
separating.....................................................82 
Signing.........................................................21 

Certifiicate Authority 
CA Certificate..............................................18 

certs ..............................................................16 

cipherlist .......................................................... 47 
client.pem ........................................................ 13 
crl.................................................................. 16 
crl_dir ........................................................ 16 
CyptoAPI......................................................... 70 
database ...................................................... 16 
Default Web Site ............................................. 66 
delete certificates 

index.txt ...................................................... 21 
Digital Signatures 

Authenticode............................................... 86 
Directory Security............................................ 67 
Disclaimer.......................................................... 2 
do_ms.bat......................................................... 10 
doinc.pl ............................................................ 11 
DSAPARAM 

utility........................................................... 52 
echo ................................................................. 18 
enc 

utility........................................................... 58 

decrypting ................................................... 58 
encrypting ................................................... 58 
using enc utility........................................... 58 

GENDSA 
utility........................................................... 53 

genrsa........................................14, 15, 20, 84, 86 
HTTP 

Using with OpenSSL .................................. 81 
HTTPS 

connecting to using SSL ............................. 81 
index.txt ........................................................... 17 
Introducing OpenSSL........................................ 5 
Keys 

exporting ..................................................... 74 
generate an RSA ......................................... 84 
separating...............................................82, 93 

Libeay32.dll..................................................... 12 
Microsoft Management Console...................... 60 
Microsoft RSA Schannel Cryptographic Provider

.................................................................... 70 
Microsoft RSA Schannel Cryptogrpahic Provider

.................................................................... 93 
MSVC................................................................ 8 
new_certs_dir .......................................... 16 
OpenSSL.cnf ................................................4, 15 
OpenSSL.dsw .................................................. 12 

Config File...................................................15 
Creating .......................................................13 
Creating the Directory Structure..................13 
Key File ....................

export 
PKCS option ............................................... 84 

Files 

 
This document is to be used in conjunction with Visual SSL and should not be transmitted in any form. 

105 



Index 
 

openssl-9.6.a.......................................................7 
out32dll.............................................................11 
password 

using in command lines ...............................83 

serial.................................................
serial file 

PATH ............. 8, 9, 10, 12, 14, 18, 57, 80, 81, 88 
Personal
pfx.....................................................................60 

 
importing into Windows ..............................94 
parsing .........................................................78 

PKCS12 
utility............................................................60 

policy_anything ..............................21, 24, 87, 88 
Private Keys 

Creating .......................................................20 
private_key................................................16 
Public Certificate 

Creating .......................................................20 
RAND 

utility............................................................53 
RANDFILE.......................................................16 
req.....................................................................18 
RSA Key ..........................................................14 
s_client .............................................................37 

utility............................................................49 
s_server.............................................................37 

run time commands......................................49 
utility............................................................45 

Schannel ...........................................................70 
secure connections 

Creating .......................................................91 

.......... 16 

modifiying................................................... 21 
server.pem ............................................13, 38, 45 
SSL 

in IIS............................................ 90 
SSLeay32.dll ................................................... 12 

1 
timestamp ...................................................... 100 
touch ................................................................ 17 
Trusted Root Certificate Authorities................ 29 
Trusted Root Certificates 

MMC .......................................................... 61 
Using Internet Explorer to Install the Certificate

.................................................................... 33 
VC6ossl096a.zip................................................ 7 
VCVARS32.bat ................................................. 8 
VC-WIN32 ...................................................... 10 
Verification 

Client .......................................................... 40 
Verify 

return code .................................................. 40 
return codes................................................. 55 

VERIFY 
utility........................................................... 54 

Verisign 
getting their home page in SSL................... 81 

version 
utility........................................................... 60 

Visual 3270........................................................ 1 
Web Server 

SSL Enabling .............................................. 90 

 
 

 Certificate store..................................98 Enabling 

PKCS#12 
exporting......................................................87 
exporting from IIS .......................................76

Summary........................................................ 10

 
This document is to be used in conjunction with Visual SSL and should not be transmitted in any form. 

106 


	���
	Trizen’s OpenSSL Documentation and Developer’s Gu
	Contents�OpenSSL for Windowstm1Developer’s Guide�
	Introducing OpenSSL
	Before you Begin
	What’s Included in the Developer’s Guide?
	Building the OpenSSL Libraries
	Creating Your Own Certificate Authority
	Creating the Directory Structure
	Creating the Random File (.rnd)
	Creating the CA Key File
	Creating the Config File (OpenSSL.cnf)
	Having problems opening the Configuration File
	Creating the Database (index.txt) and Serial files for the CA
	Creating the CA Certificate
	Creating a NEW Public Certificate and Key Pair
	Signing Certificate Requests (Being a Certificate Authority)
	Adjusting the Certificates for Windows Operating Systems
	Installing the CA Certificate into the Windows Operating System
	Using Internet Explorer to Install the Certificate
	Certificate Chaining
	Importing the CA Certificate


	Using the OpenSSL Applications s_server.exe & s_client.exe
	Running s_client.exe and s_server.exe
	Creating a CAFile

	OpenSSL Utilities
	S_SERVER
	
	
	s_server –Verify 1 –CAPath c:\\CARoot\\certs

	s_server –CAFile c:\\CARoot\\root.pem
	s_server –accept 4433 –www
	s_server runtime commands




	S_CLIENT
	
	
	s_client –reconnect –connect 127.0.0.1:443



	ASN1PARSE
	DSAPARAM
	GENDSA
	RAND
	VERIFY
	enc
	
	
	
	Cipher




	version
	PKCS12

	Authenticode and Digitally Signing Your Applications
	Summary
	Index


