
V

Updated:
June 2011

SIOS Meßtechnik GmbH
Am Vogelherd 46
98693 Ilmenau / GERMANY
Tel.: +49-3677-64470
Fax: +49-3677-64478
Email: info@sios.de
Internet: http://www.sios.de

siosifm.dll
Version 1.3

API Description

Manual of the dynamic link library siosifm.dll 2

Contents

1 The principle of operation... 6

2 Functions for the initialization, opening and closing..10

IfmClose.. 11

IfmCloseDevice... 12

IfmDeviceCount.. 13

IfmInit.. 14

IfmMaxDeviceCount... 15

IfmOpenCOM.. 16

IfmOpenDemo.. 17

IfmOpenUSB.. 18

IfmSearchUSBDevices... 19

IfmUSBDeviceCount... 20

IfmUSBDeviceSerial... 21

3 Functions for the measurement ... 23

 3.1 Continuous mode.. 24

IfmGetFilterCoeff.. 24

IfmGetFilterNotchFrequency... 25

IfmGetRecentValues... 26

IfmGetValues.. 27

IfmLengthValue... 28

IfmSetPreset... 29

IfmGetPreset.. 30

IfmSetFilter... 31

IfmSetFilterCoeff... 33

IfmSetFilterNotchFrequency... 35

IfmSetMeasurement... 36

IfmSetToZero.. 38

IfmSetTrigger.. 39

IfmStart... 42

IfmStop... 43

IfmResetBuffer.. 44

IfmValueCount.. 45

IfmAngleValue... 46

IfmAngleAvailable... 50

 3.2 Block mode... 51

IfmCancelBlock... 52

Manual of the dynamic link library siosifm.dll 3

IfmIsBlockAvailable... 53

IfmSetBlockMode.. 54

IfmSetBlockModeFilter.. 55

IfmSetBlockModeFilterCoeff... 56

IfmStartBlock.. 57

4 Functions for the controlling of the interferometers...58

IfmGetAGC... 59

IfmGetRefMirrorVibration.. 60

IfmNewSignalQualityAvailable..61

IfmSetAGC... 63

IfmSetRefMirrorVibration.. 64

IfmSignalQuality.. 65

IfmStatus.. 67

IfmWasBeamBreak... 69

IfmWasLaserUnstable... 70

IfmWasLostValues.. 71

5 Functions for the communication with other devices...72

 5.1 General functions.. 72

IfmI2CRead.. 73

IfmI2CRequestRead... 74

IfmI2CReadBuffer... 75

IfmI2CReadValue.. 76

IfmI2CReadReady.. 77

IfmI2CRequestWrite... 78

IfmI2CStatus... 79

IfmI2CWrite... 80

 5.2 Functions for the motor control card...81

6 Functions for the environment values...82

IfmAirPressure.. 85

IfmAirPressureFlags... 86

IfmAirRefraction.. 88

IfmConversionCoeff.. 89

IfmDeadpathCoeff... 90

IfmEnableEdlenCorrection.. 91

IfmEnvSensorCount.. 92

IfmHumidity... 93

IfmHumidityFlags.. 94

IfmIsEdlenEnabled.. 95

IfmGetDeadPath... 96

Manual of the dynamic link library siosifm.dll 4

IfmNewEnvValuesAvailable.. 97

IfmResetManualEnvironment...98

IfmSensorProperty.. 99

IfmSensorValue.. 102

IfmSetAirPressure... 103

IfmSetConvertionCoeff... 104

IfmSetDeadPath... 105

IfmSetHumidity... 106

IfmSetTemperature... 107

IfmSetWavelength.. 108

IfmSetWaterVapourPressure..109

IfmTemperature... 110

IfmTemperatureFlags.. 111

IfmVacuumWavelength...112

IfmWaterVapourPressure.. 113

IfmWavelength.. 114

7 Extended functions ... 115

IfmAuxValue.. 115

IfmChannels.. 117

IfmDeviceInfo.. 118

IfmDeviceInterface.. 121

IfmDeviceType.. 122

IfmDeviceValid.. 123

IfmDLLVersionString... 124

IfmFireTrigger... 125

IfmFirmwareVersion.. 126

IfmGetError... 127

IfmGetErrorString.. 128

IfmRawValue... 129

IfmResetDevice.. 130

IfmSetDeviceInfo.. 131

IfmSetOption... 133

8 Functions for the service... 134

IfmSaveConfigDevice... 134

IfmSetMeasurementRawValue...135

IfmUpdateDevice.. 136

9 Error codes... 137

Manual of the dynamic link library siosifm.dll 5

1 The principle of operation

1 The principle of operation

For using the new interferometer interface, introduced with the RE-10 interface card, it is

necessary to link the application with “siosifm.dll”. The header files “siosifmdll.h” and

“siosifmdef.h” containing the API for the DLL. “siosifmdll.h” contains the function prototypes and

includes automatically “siosifmdef.h” which contains most of the definitions. Therefore, for the

application it's sufficient to include “siosifmdll.h”.

The RE-10 interface card of the SIOS interferometers can be connected via USB or RS232. The

USB-connection builds up a virtual COM-port and can be found in the device manager of Windows

among the COM-ports. In Linux the card appears as a modem device with the name

/dev/ttyACM0 or with an other number.

All functions of the API can be arranged in seven parts:

1. functions for initializing, configuration, opening and closing of the SIOS-card/device

2. functions for the measurement

3. functions for the controlling of the interferometers

4. functions for the communication with other card in the SIOS interferometer (via the device

internal I2C-bus).

5. functions for the environment values the so called Edlen-correction of measurement values

for air refraction

6. extended functions that are used only in special applications

7. service functions

The next chapters of this manual deliver the detailed description of each function.

The following example explains the procedure of a measurement of length values with the output

word rate of 1 Hz and with default filter settings. That means, the DLL calculates the settings of the

internal signal processing based on the given output word rate so that vibrations of the reference

mirror vibrator as well as other possible distortions are suppressed as good as possible.

#include <stdio.h>
#include <conio.h>
#include "siosifmdll.h"
int main(int argc, char *argv[])

Manual of the dynamic link library siosifm.dll 6

1 The principle of operation

{
int error=0;
// before IfmInit; make some settings
// IFM_OPTION_DEBUGFILES let the DLL create files with information for
//debug purposes
//IfmSetOption(IFM_OPTION_DEBUGFILES, true);
// first initialize the DLL
error=IfmInit();
if(error){

printf("Error %d during IfmInit\n",error);
return(1);

}
// Search for connected devices; returns the number of via USB
//connected devices
int cnt;
cnt=IfmSearchUSBDevices();
if(cnt<=0){

printf("A SIOS interferometer could not be found\n");
IfmClose();
return(0);

}
int devNo;
// The first device will be opened;
// IfmUSBDeviceSerial and IfmOpenUSB takes a parameter for selecting
//the device from 0 to cnt-1
printf("Open device with serial number %s\n",IfmUSBDeviceSerial(0));
devNo=IfmOpenUSB(0);
if(devNo>0){

printf("Error during opening the device.\n");
IfmClose();
return(0);

}

// IfmOpenUSB has returned a number (devNo) which describes the device
// in further calls to the DLL.
// Now the measurement should be configured. The following
// configuration are required:
// the length values of the first channel with 1 Hz output
// word rate. For the removing of the the vibration of the reference
// mirror from the signal, the default filter will be set with the
// flag IFM_MEAS_FILTER_DEFAULT
// in some applications the flag IFM_MEAS_FILTER_NONE may be required
// for unfiltered output
error=IfmSetMeasurement(devNo,IFM_MEAS_ONECHANNEL|IFM_MEAS_LENGTH|
IFM_MEAS_FILTER_DEFAULT,1);
// error numbers are always negative
if(error<0){

printf("Error during opening the device.\n");
IfmClose();
return(0);

}
// Set the length values to zero; assuming the measurement mirror is
at the reference/zero position
error=IfmSetToZero(devNo,0x0F);
printf("Printing length data until a key is pressed\n\n");
// begin with the output of dates
error=IfmStart(devNo);
if(error<0){

Manual of the dynamic link library siosifm.dll 7

1 The principle of operation

printf("Error during start output.\n");
IfmClose();
return(0);

}
while(!kbhit()){
 // are new values available?

if(IfmValueCount(devNo)){
// put the value in an internal buffer for access via
//IfmLengthValue
IfmGetValues(devNo);
// get the value together with environmental values
printf("%lf %lf °C %lf Pa\n", IfmLengthValue(devNo,0),
IfmTemperature(devNo,0), IfmAirPressure(devNo,0));

}
}
//deinitialize
// stop the output of data
IfmStop(devNo);
// close the device; devNo will be no longer valid
IfmCloseDevice(devNo);
// close the DLL
IfmClose();
}

IfmInit initializes the DLL and starts an internal thread for processing all commands. This function

must be called before any other function (with exception of IfmSetOption) can be used. The

available devices are opened with one of the IfmOpenXXX functions. These functions return a

number greater or equal zero which acts like a device handle for further calls to the API. If the

opening function returns a negative value this is an error number.

IfmSetMeasurement sets the measurement conditions. It is sufficient for most applications to call

only this function. But there are other functions which also influence the measurement, like

IfmSetTrigger or the family of functions for the manual filter settings. IfmSetMeasurement must

always be called after these functions because it transmits all settings to the device.

The device can sample more channels parallel. To access to the multiple data at different times the

appropriate set of data must be frozen internally in a separate buffer. This is done by

IfmGetValues (or IfmGetRecentValues). IfmGetValues doesn't return a measurement value itself

but it is always required before accessing to the measurement values with IfmLengthValue,

IfmRawValue or IfmAuxValue.

A little bit extended example can be found among the sample programs which are available with

the DLL.

Most of the API-functions return immediately but there are some exceptions:

• IfmI2CRead, IfmI2CWrite, IfmSetRefMirrorVibration and IfmSetAGC transmit data via the

Manual of the dynamic link library siosifm.dll 8

1 The principle of operation

internal I2C-bus of the interferometer and wait until the transmission is completed (or a

timeout occurs)

• IfmClose tries to shut down all devices in a controlled manner. It waits until all devices have

sent out the data in their output buffers. Therefore IfmClose blocks all other processes until

all devices are shut down (or a timeout occurs).

Also, even if a function returns immediately the appropriate action can be delayed. For example,

IfmSetMeasurement and IfmStart are always returning without any delay, but the start of the

measurement is delayed until the device has transmitted all information which are required (it's

configuration, environmental data, reference mirror status).

Most of the functions return 0 if the action was successfully or a negative number in case of an

error. Some functions return on success a non negative number (like the device count) but also a

negative error number if something has failed. Only rare functions return boolean values: a zero for

false and a 1 for true. An example is IfmDeviceValid.

Manual of the dynamic link library siosifm.dll 9

2 Functions for the initialization, opening and closing

2 Functions for the initialization, opening and closing

The DLL must be initialized by calling IfmInit before other functions can be used. Normally IfmInit

starts an internal thread which handles the device communication. IfmClose is the counterpart of

IfmInit. It stops the internal thread and gives free all allocated resources.

Each device must be opened by calling IfmOpenCOM for a COM-Port or IfmOpenUSB for an

USB-interface. If the device is not longer in use, the interface have to be closed (before calling

IfmClose and exiting). IfmCloseDevice Should be called for every open device.

IfmOpenCOM and IfmOpenUSB return an unique number (further called devNumber) which

selects the device in other calls to the library. It's very similar to the handle usage in the Windows

API.

Manual of the dynamic link library siosifm.dll 10

2 Functions for the initialization, opening and closing

IfmClose

Syntax

void IfmClose()

Description

This function deinitializes the library, stops the internal thread and gives free all allocated

resources. Depending on open devices or on the time span since the last device has been closed

IfmClose waits for a controlled shut down of the devices. Therefore, IfmClose may block for a

maximum of 2 seconds (typically some milliseconds).

Input parameters

none

Output parameters

none

See also an example in the section IfmOpenCOM.

Manual of the dynamic link library siosifm.dll 11

2 Functions for the initialization, opening and closing

IfmCloseDevice

Syntax

void IfmCloseDevice(int devNumber)

Description

This function deinitializes a device which has been opened by IfmOpenCOM or IfmOpenUSB. The

devNumber becomes invalid after calling this function. The device cannot be used later.

Each call of IfmOpenCOM or IfmOpenUSB needs a call of IfmCloseDevice when the device is not

longer in use.

The device is shut down in a controlled manner so that all buffered commands are transmitted.

IfmCloseDevice blocks until this controlled shut down is done, which lasts typically 150

milliseconds.

To prevent it, IfmSetOption(IFM_OPTION_BLOCKONCLOSE,false) changes the behaviour.

IfmCloseDevice will return immediately but the device is internal still alive. Normally this doesn't

affect the user but has some side effects. For example, in a successive call to IfmCloseDevice and

IfmOpenUSB the opening of the same physical interface causes an error because the resource is

still in use.

Input parameters

devNumber Unique ID for the device, returned by IfmOpenCOM or IfmOpenUSB

Output parameters

none

See also an example in the section IfmOpenCOM.

Manual of the dynamic link library siosifm.dll 12

2 Functions for the initialization, opening and closing

IfmDeviceCount

Syntax

int IfmDeviceCount()

Description

The function IfmDeviceCount returns the number of opened devices.

Input parameters

No input parameters.

Output parameters

Required count of open devices.

Manual of the dynamic link library siosifm.dll 13

2 Functions for the initialization, opening and closing

IfmInit

Syntax

int IfmInit()

Description

This function initializes the DLL and starts an internal thread for the communication with the

connected devices.

IfmInit must be called before any other function (except IfmSetOption) of the library can be used.

When the library is not longer in use, IfmClose should be called.

Input parameters

none

Output parameters

0 if the function has success, an error number otherwise.

See also an example on the IfmOpenCOM.

Manual of the dynamic link library siosifm.dll 14

2 Functions for the initialization, opening and closing

IfmMaxDeviceCount

Syntax

int IfmMaxDeviceCount()

Description

The function IfmMaxDeviceCount returns the number of the maximum allowed devices.

Input parameters

No input parameters.

Output parameters

Requested count of maximum allowed devices

Manual of the dynamic link library siosifm.dll 15

2 Functions for the initialization, opening and closing

IfmOpenCOM

Syntax

Windows:

int IfmOpenCOM(int comNumber)

Linux:

int IfmOpenCOM(const char* deviceName)

Description

This function opens a device which is connected by a serial RS232-port.

Please note, the USB connection of the RE-10 card is build internally over a virtual RS232-port.

Therefore, an USB-connection of the RE-10 can be opened by IfmOpenUSB as well as by

IfmOpenCOM.

Input parameters

comNumber The number of the RS232-interface, for example 3 for COM3.

deviceName The Linux name of the device, for example /dev/ttyACM0

Output parameters

The function returns an unique ID, the devNumber, which must be used to access to the device in

future calls to the library. The devNumber is always a non-negative number. In case of an error, an

error number is returned. Error numbers are always negative. See also the part Error codes.

Manual of the dynamic link library siosifm.dll 16

2 Functions for the initialization, opening and closing

IfmOpenDemo

Syntax

int IfmOpenDemo(int channels)

Description

not yet implemented

Manual of the dynamic link library siosifm.dll 17

2 Functions for the initialization, opening and closing

IfmOpenUSB

Syntax

int IfmOpenUSB(int uniqueId)

Description

This function opens a device which is connected via the USB-interface for communication.

Input parameters

uniqueId The ID which describes the device. See IfmSearchUSBDevices for

more information.

Output parameters

The function returns an unique ID, the devNumber, which must be used to access the device by

the future calls to the library. The devNumber is always a non negative number.

In case of an error an error number is returned. Error numbers are always negative.

Manual of the dynamic link library siosifm.dll 18

2 Functions for the initialization, opening and closing

IfmSearchUSBDevices

Syntax

int IfmSearchUSBDevices()

Description

The function IfmSearchUSBDevices looks for devices (this time only RE-10 cards) which are

connected to the PC via the USB-Bus and returns the number of connected devices. These

devices can be opened by IfmOpenUSB. For distinguishing between different devices the serial

number can be accessed by the function IfmUSBDeviceSerial. IfmUSBDeviceSerial and

IfmOpenUSB need an unique ID to select the desired device. This ID is the running number

between zero and the device count minus one.

Input parameters

No input parameters.

Output parameters

The function returns the devices count. Zero will be returned, if no device can be found. In case of

an error a negative error number is returned.

Manual of the dynamic link library siosifm.dll 19

2 Functions for the initialization, opening and closing

IfmUSBDeviceCount

Syntax

int IfmUSBDeviceCount()

Description

The function IfmUSBDeviceCount returns the number of devices on the USB-bus found at the last

search by IfmSearchUSBDevices.

Input parameters

No input parameters.

Output parameters

Number of devices on the USB-bus.

Manual of the dynamic link library siosifm.dll 20

2 Functions for the initialization, opening and closing

IfmUSBDeviceSerial

Syntax

int IfmUSBDeviceSerial(int uniqueId)

Description

The function IfmUSBDeviceSerial returns the USB-serial number of the requested device. Usually

it will be used together with the function IfmSearchUSBDevices, that finds the count of the devices

on the USB-bus.

Input parameters

uniqueId The order number in the list of devices, that was created by the

function IfmSearchUSBDevices. 0 <= uniqueId < deviceCount

Output parameters

Serial number of the corresponding devices as an integer value. (Even if USB-serials can be a

character string, the serial number of a RE10-cards is always a number and it is converted to an

integer).

Example

comboBoxUSBDev->clear();
int deviceCount=IfmSearchUSBDevices();
if(deviceCount>0){

for(int i=0;i<deviceCount;i++){
char s[20];
sprintf(s,”%6.6d”,IfmUSBDeviceSerial(i));
comboBoxUSBDev->addItem(s,i);
}

}

Explanation: An existing combo box comboBoxUSBDev is used for the displaying of available

devices. At the begin of the code this list is cleared. After the call of IfmSearchUSBDevices the the

count of the existing devices on the USB-bus is known. The serial number of this devices delivers

Manual of the dynamic link library siosifm.dll 21

2 Functions for the initialization, opening and closing

the function IfmUSBDeviceSerial. For each device an entry with the serial number in the combo

box is created.

Manual of the dynamic link library siosifm.dll 22

3 Functions for the measurement

3 Functions for the measurement

For accessing the interferometer values two different modes are available. The continuous mode

delivers data in a continuous data stream nearly in time with the measurement (plus the delay due

to the transport to the PC). With USB-connection the RE-10 can reach data rates up to 22 kHz.

The block mode has to be used for faster data rates. In block mode are the data stored in an

internal buffer before transmitting to the PC so that the measurement and the transport of the data

are decoupled. It allows faster data rates (up to 12.5 MHz with the RE-10) but the maximum data

count is limited by the length of the internal buffer (65535 samples in case of the RE-10).

The incoming data are stored on the PC in a FIFO buffer. IfmGetValues reads the data from one

time sample (length values of all channels and other data according to the configuration of the

measurement) from the FIFO and provides them to an internal buffer. These values can be

accessed by IfmLengthValue, IfmRawValue or IfmAuxValue. IfmGetValues empties the FIFO buffer

from the bottom (the values incoming first are read out first).

IfmGetRecentValues acts like IfmGetValues but reads the data from top of the FIFO without

removing it from the buffer. It allows the reading of the newest values without removing values

from the buffer, so that IfmGetValues will work at the same time (for example, use IfmGetValues to

read out the values for storing them into a file and use IfmGetRecentValues for displaying the most

recent data on the screen).

The measurement starts with IfmStart. Before that, the measurement options should be set with

IfmSetMeasurement and if required with IfmSetFilter and/or IfmSetTrigger. Otherwise the

measurement is configured with the default values from the device (which may vary).

Please note, that IfmSetMeasurement must always be called after IfmSetFilter (and related

functions) and IfmSetTrigger, because IfmSetMeasurement transmits the settings to the device.

Manual of the dynamic link library siosifm.dll 23

3 Functions for the measurement

 3.1 Continuous mode

IfmGetFilterCoeff

Syntax

double IfmGetFilterCoeff(int devNumber, int channel)

Description

The function returns the coefficient of the FIR-filter for the corresponding device and channel.

This function should only be used by advanced users. Please see the RE-10 signal processing

guide for more information.

See also Fehler: Referenz nicht gefunden, IfmSetMeasurement, IfmSetFilterCoeff.

Input parameters

devNumber Unique ID for the device

channel Channel number

Output parameters

requested FIR-filter coefficient

or

0 in case of an error

Manual of the dynamic link library siosifm.dll 24

3 Functions for the measurement

IfmGetFilterNotchFrequency

Syntax

double IfmGetFilterNotchFrequency(int devNumber, int channel)

Description

This function returns the notch frequency, which was set by IfmSetFilterNotchFrequency in case of

the user settings, otherwise it is a default value calculated by the dll on the basis os the measuring

conditions.

The function delivers a valid value AFTER IfmSetMeasurement was called.

Input parameters

devNumber Unique ID for the device

channel Channel number

Output parameters

Notched frequency in Hz

Manual of the dynamic link library siosifm.dll 25

3 Functions for the measurement

IfmGetRecentValues

Syntax

int IfmGetRecentValues(int devNumber, int index)

Description

The function IfmGetRecentValues is used to read out the measurement values at the

indexreadout from the input puffer.

indexreadout=count−index−1

The count of the measuring values can be requested by the function IfmValueCount.

The index “0” reads the most recent value.

The values are provided in an internal buffer for accessing via IfmLengthValue, IfmRawValue or

IfmAuxValue

In contrast to IfmGetValues this function does not influence the amount of available values which is

returned by IfmValueCount.

Input parameters

devNumber Unique ID for the device

index Index, 0 means the most recent value

Output parameters

0 on success, an negative error number if an error has occurred

Example

IfmGetRecentValues(devNo,0);
last_measured_distance=IfmLengthValue(devNo,0);

Explanation: The most recent value will be provided for accessing via IfmLengthValue

Manual of the dynamic link library siosifm.dll 26

3 Functions for the measurement

IfmGetValues

Syntax

int IfmGetValues(int devNumber)

Description

This function is used to request of the measuring values from the input buffer. The available values

will be read out according to FIFO (first in first out) principle. Usually this function will be used

together with the functions IfmLengthValue, IfmRawValue or IfmAuxValue.

Input parameters

devNumber Unique ID for the device

Output parameters

0: on success (otherwise a negative error number)

Example

int count=IfmValueCount(devNo);
if(count>0){

for(int i=0;i<count;i++){
IfmGetValues(devNo);
if(file)fprintf(file,"%f %f %f %f\n",

IfmLengthValue(devNo,0),
IfmLengthValue(devNo,1),
IfmLengthValue(devNo,2),
IfmLengthValue(devNo,3));

}
}

Explanation: Four channels are available in the Unique ID for the device devNo. The program

tests, whether the device has sent measurement values. If IfmValueCount returns the value>0,

the values will be read out from the input puffer (function IfmGetValues) and the length measuring

value will be written to an ASCII-file.

IfmGetValues decrements the count of available values (IfmValueCount).

Manual of the dynamic link library siosifm.dll 27

3 Functions for the measurement

IfmLengthValue

Syntax

double IfmLengthValue(int devNumber,int channel)

Description

The function IfmLengthValue is to read out the length measuring values, that was extracted from a

data field of the input buffer. It is intended to use directly after the function IfmGetValues or

IfmGetRecentValues

Input parameters

devNumber Unique ID for the device

channel Channel number

Output parameters

measuring value in nanometres

Example

if (IfmValueCount(devNo)>0)
{

IfmGetRecentValues(devNo,0);
double value_channel_0= IfmLengthValue(devNo,0);
double value_channel_1= IfmLengthValue(devNo,1);

}

Explanation: if the measuring values are available (IfmValueCount(devNo)>0) , the last length

values for channel 0 and 1 will be read out.

Manual of the dynamic link library siosifm.dll 28

3 Functions for the measurement

IfmSetPreset

Syntax

int IfmSetPreset(int devNumber, int channel, double presetValue)

Description

Normally IfmSetToZero defines the reference point for the measurement and sets the length value

to 0. There are possible applications where it seems more practical to set the position at the

reference point to another value, the so called preset value. IfmSetPreset sets this preset value.

With the next IfmSetToZero the preset becomes active. This means:

• IfmSetPreset must be called before IfmSetToZero, and

• that the preset value becomes active not before IfmSetToZero is called

In principle this behaviour can also be emulated in the end user software. But the handling in the

siosifm library has the advantage that the preset value is exactly set at the time of the definition of

the reference point. It prevents jumps in the data.

The preset value influences only the length values of IfmLengthValue. IfmAngleValue and

IfmRawValue are not touched.

Input parameters

devNumber Unique ID for the device

channel Channel number

presetValue The value, IfmLengthValue should return at the reference

position in nm

Output parameters

0 in success, otherwise an error number

Manual of the dynamic link library siosifm.dll 29

3 Functions for the measurement

IfmGetPreset

Syntax

double IfmGetPreset(int devNumber, int channel)

Description

With IfmSetPreset a so called preset value can be set, what sets the reference point, defined with

IfmSetToZero to a length value other than zero.

The preset value becomes active when IfmSetToZero is called and the zeroing procedure (which

may take some ms) is complete.

Input parameters

devNumber Unique ID for the device

channel Channel number

Output parameters

The current preset value in nm. In case of an error, it returns always 0.

Example

IfmSetPreset(devNo,0,3000000); // set 3 millimeter preset
double a=IfmGetPreset(devNo,0); // will return 0
IfmSetToZero(devNo,0x0F); // set all channels to zero and loads
 // the preset
a=IfmGetPreset(devNo,0); // will likely also return 0, because
 // zeroing procedure is not complete
Sleep(50);
a=IfmGetPreset(devNo,0); // will return 3000000

Manual of the dynamic link library siosifm.dll 30

3 Functions for the measurement

IfmSetFilter

Syntax

int IfmSetFilter(int devNumber, unsigned int filterFlags,int avg1, int avg2)

Description

The function is used to set the filter options.

This function is for experts only!

The filtering process demonstrates following figure:

avr1, avr2 and avr3 are reducing averaging filter. The number of the measuring values for avr1 and

avr2 will be built as

. N 1=2avr1

and

. N 2=2avr2

avr3 consists of three stages of averaging filters with 5, 6 and 9 samples.

If the values avr1 or avr2 is equal 0, will be the corresponding filter deactivated. Additionally there

Manual of the dynamic link library siosifm.dll 31

Figure 1: Structure of the signal processing box

3 Functions for the measurement

are the possibility to deactivate the filter stage 1 (FIR), filter stage 2 (avr2) and the filter stage 3

(avr3) via the filterFlags of this function.

For the description of the FIR-filter see function IfmSetFilterCoeff.

It is important to use this function before the function IfmSetMeasurement because the

IfmSetMeasurement function sets the filter settings in the device together with all other

measurement settings.

Please note also the the measurementFlags in the function IfmSetMeasurement.To set up the filter

manually the measurementFlags must contain IFM_FILTER_USER.

Input parameters

devNumber Unique ID for the device

filterFlags Following parameters can be set:

IFM_FILTER_STAGE1 Set the filter stage 1 (FIR) on

IFM_FILTER_STAGE2 Set the filter stage 2 (avr2) on

IFM_FILTER_STAGE3 Set the filter stage 3 (avr3) on

Output parameters

0 on success, an negative error number if an error has occurred

Example

IfmSetFilter(0, IFM_FILTER_STAGE2|IFM_FILTER_STAGE3,2,3)

Explanation: In Unique ID for the device 0 set on the filter avr1,avr2 and avr3. The number of

measuring values for the averaging and reducing: averaging filter 1: N 1=22=4 ; averaging filter

2 : N 2=23=8 . The whole stage3 is also switched on: 5*6*9=270. The reducing factor of the

whole signal processing box is N r=4⋅8⋅270=8640 what means that, for example, an input

sample rate of 100.000 Hz will result in an output word rate of 100000/8640= 11,574.

Manual of the dynamic link library siosifm.dll 32

3 Functions for the measurement

IfmSetFilterCoeff

Syntax

int IfmSetFilterCoeff(int devNumer, int channel, double coeff)

Description

The function is used to set the FIR-filter coefficients.

This function is for experts only!

This function should be applied for every of available channel. The FIR-filter contains 3 coefficients

from which the second coefficient can be configured. The other two are always set to one koef=[1

coeff 1]. It means, the FIR filter has only one zero point in his frequency response and, therefore,

forms a notch filter.

Manual of the dynamic link library siosifm.dll 33

Figure 2: Magnitude frequency response of a FIR-filter (an example)

3 Functions for the measurement

The notch frequency can be influenced by setting the second coefficient through IfmSetFilterCoeff

or IfmSetFilterNotchFrequency.The function IfmSetMeasurement should be used with the flag

IFM_MEAS_FILTER_USER for the acceptance of this setting.

If the measurementFlags in IfmSetMeasurement contains IFM_MEAS_FILTER_DEFAULT the filter

coefficients (as well as the other signal processing) is configured, to notch out reference mirror

vibration frequency.

Input parameters

devNumber Unique ID for the device

channel Channel number

coeff coefficient

Output parameters (error numbers)

0 on success, an negative error number if an error has occurred

Manual of the dynamic link library siosifm.dll 34

3 Functions for the measurement

IfmSetFilterNotchFrequency

Syntax

int IfmSetFilterNotchFrequency(int devNumber, int channel, double freq);

Description

This function is a simplified implementation for the setting of the FIR notch filter (see also

IfmSetFilterCoeff).

This function is for experts only!

It should be applied for every of available channel. The function IfmSetMeasurement should be

used with the flag IFM_MEAS_FILTER_USER for the acceptance of this setting. If the

measurementFlags in IfmSetMeasurement contains IFM_MEAS_FILTER_DEFAULT, the filter

coefficients (as well as the other signal processing) will be configured, to notch out reference

mirror vibration frequency.

The input parameter freq is the wished notch frequency in Hz. The dll calculates the FIR-filter

coefficients. A precondition for the successful execution is the following term:

f i
4
≤ freq≤

f i
2

f i is the frequency on the input of FIR-filter.

See also the filter stages description with the functions IfmSetFilter and IfmSetFilterCoeff.

Input parameters

devNumber Unique ID for the device

channel Channel number

freq notched frequency in Hz

Output parameters

0 on success, an negative error number if an error has occurred

Manual of the dynamic link library siosifm.dll 35

3 Functions for the measurement

IfmSetMeasurement

Syntax

int IfmSetMeasurement(int devNumber,unsigned int measurementFlags, double outputWordRate)

Description

The function IfmSetMeasurement is used to set the measurement parameters. This function should

be called directly before the measurement starts (see IfmStart). If this function is not called the

settings which are saved in the flash of the interferometer are used.

Input parameters

devNumber Unique ID for the device

measurementFlags Following parameter can be used:

 IFM_MEAS_ONECHANNEL Channel number 1 is on

 IFM_MEAS_TWOCHANNEL Channels number 1-2 are on

 IFM_MEAS_THREECHANNEL Channels number 1-3 are on

 IFM_MEAS_FOURCHANNEL Channels number 1-4 are on

 IFM_MEAS_CH1 Channel number 1 is on

 IFM_MEAS_CH2 Channel number 2 is on

 IFM_MEAS_CH3 Channel number 3 is on

 IFM_MEAS_CH4 Channel number 4 is on

 IFM_MEAS_LENGTH Full length information

 IFM_MEAS_SINCOS SIN / COS values from the input are transmitted

 IFM_MEAS_CIRCLE Amplitude of the Lissajous figure

 IFM_MEAS_PATTERN Test pattern (value 0x5555)*

 IFM_MEAS_VAL_COUNTER Internal value counter*

 IFM_MEAS_FILTER_DEFAULT Default filter will be applied

 IFM_MEAS_FILTER_OFF No filter will be used

 IFM_MEAS_FILTER_USER User filter settings will be used

 * for test purpose

Manual of the dynamic link library siosifm.dll 36

3 Functions for the measurement

Output parameters

0 on success, an negative error number if an error has occurred

Example 1

IfmSetTrigger(devNumber,IFM_TRIGGER_OFF);
int measFlags= IFM_MEAS_TWOCHANNEL|
IFM_MEAS_LENGTHIFM_MEAS_FILTER_OFF;
IfmSetMeasurement(devNumber, measFlags , 1000);
IfmStart(devNumber);

Explanation: The channels one and two will be activated; the measurement value type that should

be transmitted is the length value; there are no filtering and triggering; output word rate is 1 kHz.

The measurement starts directly after IfmStart(devNumber). The device samples the signal with 1

kHz, saves the sampled values into a puffer and sends the unprocessed measurement values.

The measurement will stop, if IfmStop(devNumber) is sent.

Example 2

IfmSetTrigger(devNumber, IFM_TRIGGER_STARTSTOP_PROC
|IFM_EXTTRIG_RISING_EDGE);
int IfmSetFilter(devNumber,IFM_FILTER_STAGE2|IFM_FILTER_STAGE3, 2, 3)
int measFlags= IFM_MEAS_ONECHANNEL|IFM_MEAS_LENGTH|
IFM_MEAS_FILTER_DEFAULT;
IfmSetMeasurement(devNumber, measFlags , 10);
IfmStart(devNumber);

Explanation: In the device the channel one will be activated with following settings:

measurement value type: length values;

user settings for the filtering;

output word rate: 10 Hz.

After the call of the function IfmStart, the device waits for the rising edge on the trigger input. If the

appropriate level change on the event input is detected, the measurement will start. The device is

set up to sample with the internal highest possible sample rate and to notch the reference mirror

vibration. The internal signal processing reduces the sampling rate to the required output word rate

of 10 Hz. The processed value will be sent to the PC with the output word rate of 10 Hz. The

measurement stops after the next rising edge on the trigger input or by calling IfmStop.

Hint: If the measurementFlags are set to 0, the measurement is started with the device internal

configured channels, requesting length values and sets the default filter. If you are not sure, set

measurementFlags to 0 should work in most conditions.

Manual of the dynamic link library siosifm.dll 37

3 Functions for the measurement

IfmSetToZero

Syntax

int IfmSetToZero(int devNumber, int channelMask)

Description

The function sets the internal counter of the interferometer to zero and defines the reference point

for the displacement measurement. The parameter channelMask defines which channel should be

cleared.

At the same time the dead path of the channel, set by IfmSetDeadPath will be taken over into the

environmental correction.

Input parameters

devNumber Unique ID for the device

channelMask Mask which defines, which channels should be affected (use the

constants IFM_CHANNEL1 to IFM_CHANNEL4)

Output parameters

0 on success, an negative error number if an error has occurred

Manual of the dynamic link library siosifm.dll 38

3 Functions for the measurement

IfmSetTrigger

Syntax

int IfmSetTrigger(int devNumber, unsigned int triggerMode)

Description

The function is used to set the trigger conditions.

This settings have to be made before calling IfmSetMeasurement.

The RE-10 card works together with the trigger card TR-10 which provides three inputs:

1. the trigger input

Normally this input is used for the typical trigger options. The trigger input is internally

connected to the logic hardware so that it reacts very fast with a short delay of typical some

nanoseconds (for details see the data sheet of the TR-10 or the manual of the

interferometer).This trigger input is used for the start/stop of the processed and

unprocessed values.

2. the event input

This input is connected to the microprocessor of the RE-10. It's usage is potentially more

flexible and especially suitable in conjunction with processed values (filtered values). But

due to the limited reaction speed of the microprocessor the timing is less accurate then the

timing of the trigger input. This input is for triggering of processed (filtered) values.

3. the clock input

Normally the AD-converters of the RE-10 run with 50 MHz and the logic continuously

counts the interferences. So the length in the interferometer is always up-to-date. The

measurement values are taken from the counter logic with the requested sample rate (or

output word rate which is the sample rate reduced by the filter in the processing stage).

Instead of using a fixed sample rate the clock input can be used to define at which point in

time a sample should be taken from the counter logic.

The usage of the three trigger inputs can be combined.

There are differences between triggering unprocessed and processed values. Unprocessed values

Manual of the dynamic link library siosifm.dll 39

3 Functions for the measurement

mean the values that comes directly from the count logic. Processed values are filtered with the

current filter settings (which can also be switched of so that processed and unprocessed are the

same). If filtering is on the filters usually reduces the sampling rate. So more unprocessed values

are required to create one processed value. If unprocessed values are triggered and the filtering is

on, please note that more than one trigger pulse is necessary for outputting one single sample. If

this is desired, trigger processed values or switch the filter off.

Input parameters

devNumber Unique ID for the device

triggerMode Following parameters can be set:

IFM_TRIGGER_OFF no trigger

IFM_TRIGGER_START start the measuring after a valid (falling or rising) edge

on the trigger input (for unprocessed values)

IFM_TRIGGER_START_STOP start and stop of measuring after a valid (falling or

rising) edge on the trigger input (for unprocessed

values)

IFM_TRIGGER_CLOCK The clock input gives the sample clock

IFM_TRIGGER_EVENT outputting one (processed) measuring value after

every valid (falling or rising) edge on the event input

IFM_TRIGGER_STARTSTOP_PROC start and stop of measuring after a valid (falling or

rising) edge on the trigger input (for processed values,

can be combined with IFM_TRIGGER_EVENT)

IFM_TRIGGER_STARTSTOP_RISING_EDGE the rising slope is active at the trigger input

(otherwise the falling slope)

IFM_TRIGGER_EVENT_RISING_EDGE the rising slope is active at the event input (otherwise

the falling slope)

IFM_TRIGGER_CLOCK_RISING_EDGE the the rising slope is active on the clock input

Output parameters (error numbers)

0 on success, an negative error number if an error has occurred

Manual of the dynamic link library siosifm.dll 40

3 Functions for the measurement

Example

int error=IfmSetTrigger(devNumber,IFM_TRIGGER_STARTSTOP_PROC|
IFM_TRIGGER_EVENT);

Explanation: After the measurement is enabled (see the functions IfmSetMeasurement and

IfmStart), the device observes the trigger input for the falling edge. If the edge appears (time point

t1 on the Figure 3), the device will observe the event input for the falling edge. If it occurs (time

point t2 on the Figure 3), the device will start the measurement with the current conditions for

signal sampling and processing. The processed value will be sent to the PC. After them the device

is waiting for the next falling edge on the event input and so on. As soon as the second falling

edge was registered on the trigger input (time point t3 on the Figure 3), will be the measurement

stopped. By the conditions shown on the Figure 3, the device output four measurement values.

Manual of the dynamic link library siosifm.dll 41

Figure 3: Measuring by the using of the trigger and event

inputs of the trigger card (for the processed values)

3 Functions for the measurement

IfmStart

Syntax

int IfmStart(int devNumber)

Description

The function gives the measurement free. It should be used after the function IfmSetMeasurement.

Otherwise the device takes the settings, that has been saved in the flash as default settings. See

functions IfmSaveConfigDevice and IfmSetMeasurement for the detailed information.

Input parameters

devNumber Unique ID for the device

Output parameters

0 on success, an negative error number if an error has occurred

Manual of the dynamic link library siosifm.dll 42

3 Functions for the measurement

IfmStop

Syntax

int IfmStop(int devNumber)

Description

The function stops the measurement. It's the counterpart to IfmStart.

Input parameters

devNumber Unique ID for the device

Output parameters

0 on success, an negative error number if an error has occurred

Manual of the dynamic link library siosifm.dll 43

3 Functions for the measurement

IfmResetBuffer

Syntax

 int IfmClearBuffers(int devNumber)

Description

The function the erasing of the PC-input buffer

Input parameters

devNumber Unique ID for the device

Output parameters

0 on success, an negative error number if an error has occurred

Manual of the dynamic link library siosifm.dll 44

3 Functions for the measurement

IfmValueCount

Syntax

int IfmValueCount(int devNumber)

Description

The function delivers the count of the samples which are available in the input buffer. The count is

incremented by incoming data from the device and decremented by IfmGetValues.

See also IfmGetValues for more information.

Input parameters

devNumber Unique ID for the device

Output parameters

Count of values which can be read out from the input buffer by IfmGetValues.

Manual of the dynamic link library siosifm.dll 45

3 Functions for the measurement

IfmAngleValue

Syntax

double IfmAngleValue(int devNumber,int channel1,int channel2,int unit)

Description

Two and three beam interferometer are able to measure changes in pitch and yaw angle of the

measurement mirror. This is done via the length value difference of two channels whose beams

are directed in parallel to the same measurement mirror. The angle difference is calculated as

follows:

angle=arctan  channel1−channel2
base distance



The base distance of the two beams must be known. Normally it is factory calibrated and stored in

the device configuration of the RE-10 interface card. Under these conditions the angle can be read

out with IfmAngleValue. As with IfmLengthValue IfmAngleValue is intended to use directly after the

function IfmGetValues or IfmGetRecentValues which freeze the values in an internal buffer.

Input parameters

devNumber Unique ID for the device

channel1 Channel number for the first channel, use the constants

 IFM_CHANNEL1 to IFM_CHANNEL4

channel2 Channel number for the second channel, use the constants

 IFM_CHANNEL1 to IFM_CHANNEL4

unit 0: the angle is returned in mrads

1: the angle is returned in seconds

Output parameters

angle between the two channels in the requested unit. If a calculation of the angle was not possible

(due to missing length values for at least one channel or due to missing configuration of the base

Manual of the dynamic link library siosifm.dll 46

3 Functions for the measurement

distance) zero is returned.

Note: The channels must be given using the IFM_CHANNELx constants which code the channel

as a specific bit. An integer number cannot be used. The sign of the angle can be inverted by

permuting the parameter channel1 and channel2.

There are some possibilities to check, if the angle calculation is possible. The easiest way is to use

IfmAngleAvailable to check, if the configuration of the interferometer permits the angle

measurement between two channels.

More information can be achieved with IfmDeviceInfo. The configuration of the RE-10 allows to

define 2 pairs of channels for calculating specific angles. On three beam devices the rectangular

geometry of the beams allows typically to calculate angles between channel 2 and channel 1 (yaw

angle, note the order) as well as between channel 2 and channel 3 (pitch angle). But the

configuration of the sensor heads are potentially flexible so that deviations from this typical setup

are possible.

The following example shows the usage of IfmAngleValue as well as the achieving of the

configuration details, which are not .

Example

// ask for the configuration of the angle calculation
int k1=-1,k2=-1,k,j;
double distance;

// the first pair of channels in the configuration
k=IfmDeviceInfo(devNo,IFM_DEVINFO_LINKEDCHANNELS1);

float
f=(float)IfmDeviceInfo(devNo,IFM_DEVINFO_BASEDISTANCE1_POINTER);

distance=0;
// be carefull, older DLL versions don't know the parameter
// and would return 0
if(f)distance=*f;

// check, which channels are in thr channel mask for this pair
for(j=0;j<4;j++){
 if(k&(1<<j))k1==-1?k1=j:k2=j;
}

printf("\nChannel connection 1: %d - %d\n”
“base distance %f\n\n",k1,k2,distance);

// the same for channel 2
k=IfmDeviceInfo(devNo,IFM_DEVINFO_LINKEDCHANNELS2);

Manual of the dynamic link library siosifm.dll 47

3 Functions for the measurement

f=(float*)IfmDeviceInfo(devNo,IFM_DEVINFO_BASEDISTANCE2_POINTER);
distance=0;
if(f)distance=*f;

k1=-1;k2=-1;
for(j=0;j<4;j++){
 if(k&(1<<j))k1==-11?k1=j:k2=j;
}
printf("Channel connection 2: %d - %d\n2

“base distance %f\n\n",k1,k2,distance);

// normally between the channels 2 and 1 the yaw angle is calculated
if(IfmAngleAvailable(devNo,IFM_CHANNEL1|IFM_CHANNEL2))

printf("Angle calculation between channels 2 and 1 is possible.\n");
else

printf("Angle calculation between channels 2 and 1 is “
“NOT possible.\n");

// normally between the channels 2 and 3 the pitch angle is calculated
if(IfmAngleAvailable(devNo,IFM_CHANNEL3|IFM_CHANNEL2))

printf("Angle calculation between channels 2 and 3 is possible.\n");
else printf("Angle calculation between channels 2 and 3 is”

“NOT possible.\n");

// Set the length values to zero; assuming the measurement mirror
// is at the reference/zero position
error=IfmSetToZero(devNo,0x0F);

printf("Printing length data until a key is pressed\n\n");

// begin with the output of data
error=IfmStart(devNo);
if(error<0){
 printf("Error during start output.\n");
 IfmClose();
 return(0);
}

while(!kbhit()){

 // are new values available?
 if(IfmValueCount(devNo)){
 // put the value in an internal buffer for access via
 //IfmLengthValue and IfmAngleValue
 // this is necessary to access the same syncronuously
 //sampled values (e.g. different channels) at different times
 // IfmValueCount is decremented

 IfmGetValues(devNo);
 // get the values together with the angles
 printf("%8.0lf µm %8.0lf nm %8.0lf nm - yaw (2-1) %.3f”

“ pitch (2-3) %.3f \r",
 IfmLengthValue(devNo,0)/1000,IfmLengthValue(devNo,1)/1000,

 IfmLengthValue(devNo,2)/1000,
 IfmAngleValue(devNo,IFM_CHANNEL2,IFM_CHANNEL1,1),
 IfmAngleValue(devNo,IFM_CHANNEL2,IFM_CHANNEL3,1));
 }
}

Manual of the dynamic link library siosifm.dll 48

3 Functions for the measurement

IfmDeviceInfo(devNo,IFM_DEVINFO_LINKEDCHANNELS1) returns a byte which codes the
channels used for the first angle. The channels are expressed with the IFM_CHANNELx constants
as bits in the returned value.

f=(float*)IfmDeviceInfo(devNo,IFM_DEVINFO_BASEDISTANCE1_POINTER) returns a pointer to
a float value (4-Byte width single precision float) in which the base distance for the first pair of
channels are stored. The base distance is the distance of the beam balance points which is
(internally) necessary to calculate the angle from the length distance between the two beams.
Please note, a pointer is returned (because it's not possible to return a float or double) which
implies :

• it must be typecasted to use it, the function is declared as returning an integer (which has
the same length in a 32-bit environment as a pointer)

• it must be checked if the value is not null before using it, especially older library version
don't know about the requested info and will return null.

But these advanced informations are not necessary to use the IfmAngleValue. It's always save to
call it. If an angle calculation is not possible IfmAngleValue returns 0. An easy way to check if the
device contains the proper configuration for the required angles IfmAngleAvailable can be used as
shown in the example.

Manual of the dynamic link library siosifm.dll 49

3 Functions for the measurement

IfmAngleAvailable

Syntax
int IfmAngleAvailable(int devNumber,int channels)

Description
The function

See also IfmAngleValue for more information.

Input parameters
devNumber Unique ID for the device

channels mask of two IFM_CHANNELx constants, to test if an angle between

these channels can be calculated

Output parameters

1, if the configuration allows the calculation of an angle between the channels, given in the
channels parameter, 0 otherwise

See IfmAngleValue for an example.

Manual of the dynamic link library siosifm.dll 50

3 Functions for the measurement

 3.2 Block mode

With continuous measurement and transmission an output word rate of approximately 22 kHz can

be reached. The limiting factor is the data transmission over the USB bus as well as the

computation power of the microprocessor. But the interferometer with the RE-10 is able to sample

the length values with a sample rate up to 12.5 MHz. To use the higher sample rates the values

must be stored in the device with the full sample rate, processed and transmitted with the lower

transmission rate. The RE-10 has a FIFO (first-in-first out) buffer with a length of 65535 samples

(by the configuration:1 channel, only length values) which is used to decouple the measurement

from processing and transmitting. To use it, the SIOSIFM.DLL implements a special block mode.

The block mode may have different measurement settings as the continuous mode so a switching

between these two modes is very easy.

IfmSetBlockMode enables the block mode and sets the configuration (similar to

IfmSetMeasurement for the continuous mode). IfmStartBlock starts the measurement. The

measurement stops automatically after the requested amount of data has been collected. The

maximum amount is limited by the internal FIFO (see IfmStartBlock). With IfmIsBlockAvailable can

be asked if the requested amount of data are already transmitted to the PC and, therefore, are

ready for the reading out. The reading out of the measurement values is done in the same way as

in the continuous mode.

The typical applications for the block mode are vibration analysis (which is mostly done in blocks to

calculate for example the FFT) and the mostly triggered measurement of single short term events.

The following example gets 10 blocks with an sample rate of 12.500 MHz.

IfmSetBlockMode(devNumber,IFM_MEAS_CHANNEL1|
IFM_MEAS_FILTER_OFF,IFM_TRIGGER_OFF,12500000);

int i;
for(i=0;i<10;i++){

IfmStartBlock(devNumber,65535);
//wait for block
while(!IfmBlockAvailable(devNumber));
int j;
// read out the measurement values
for(j=0;j<65535;j++){

IfmGetValues(devNumber);
fprintf(“%f\n”,IfmGetLengthValue(devNumber,0);

}
}

Manual of the dynamic link library siosifm.dll 51

3 Functions for the measurement

IfmCancelBlock

Syntax

int IfmCancelBlock(int devNumber)

Description

This function stops the measurement of a data block which was initiated by IfmStartBlock. It also

clears an armed trigger condition.

Input parameters

devNumber Unique ID for the device

Output parameters

It returns 0 on success otherwise an error number.

Manual of the dynamic link library siosifm.dll 52

3 Functions for the measurement

IfmIsBlockAvailable

Syntax

int IfmIsBlockAvailable(int devNumber)

Description

This function is used to poll if a required block is available.

Input parameters

devNumber Unique ID for the device

Output parameters

1 of the block is available, 0 otherwise

A negative return value may indicate an error.

Manual of the dynamic link library siosifm.dll 53

3 Functions for the measurement

IfmSetBlockMode

Syntax

int IfmSetBlockMode(int devNumber,int measurementFlags,int triggerMode, int outputWordRate)

Description

This function sets the block mode and defines the measurement . A running continuous

measurement is stopped. The meaning of the input parameters is very similar to the appropriate

parameters of the continuous mode, see IfmSetMeasurement.

Input parameters

devNumber Unique ID for the device

measurementFlags see IfmSetMeasurement

triggerMode see IfmSetTrigger

outputWordRate resulting sample rate (real sample rate divided by the reducing of

filters, if used)

Output parameters

0 on success, an negative error number if an error has occurred

Manual of the dynamic link library siosifm.dll 54

3 Functions for the measurement

IfmSetBlockModeFilter

Syntax

int IfmSetBlockModeFilter(int devNumber, unsigned int filterFlags,int avg1, int avg2)

Description

This function is similar to IfmSetFilter but works for the block mode.

Input parameters

see IfmSetFilter

Output parameters

0 on success, an negative error number if an error has occurred

Manual of the dynamic link library siosifm.dll 55

3 Functions for the measurement

IfmSetBlockModeFilterCoeff

Syntax

int IfmSetBlockModeFilterCoeff(int devNumer, int channel, double coeff)

Description

This function sets the FIR filter coefficient for the build in filter in the firmware of the RE-10 for the

block mode. See IfmSetFilterCoeff for more information.

Manual of the dynamic link library siosifm.dll 56

3 Functions for the measurement

IfmStartBlock

Syntax

int IfmStartBlock(int devNumber, int blockLen)

Description

This function requests a block of the length blockLen. Before calling it, the DLL has to be switched

to the block mode by IfmSetBlockMode. The block mode persists until the next IfmStart, so after

IfmSetBlockMode IfmStartBlock can be called multiple times.

The maximum block length depends on the amount of channels and data types. For one channel

with only length values, the maximum value of blockLen is 65535.

A second channel reduces the available blockLen to 32768 samples, if additional SIN/COS-values

are requested (as required for an Lissajous display for signal quality) the blockLen is also reduced

by the factor two.

Input parameters

devNumber Unique ID for the device

blockLen length of the block in samples

Output parameters

0 on success, an negative error number in case of an error

Manual of the dynamic link library siosifm.dll 57

4 Functions for the controlling of the interferometers

4 Functions for the controlling of the interferometers

The SIOS devices can contain up to four channel. Every channel has got a separate sensor and

control system. In the siosifm.dll there are a lot of functions, which are used for the monitoring of

the states for the available channels of connected devices and for the setting of the options for the

service purposes.

For the inspection of signal conditions are the functions IfmNewSignalQualityAvailable,

IfmSignalQuality scheduled.

The functions IfmGetAGC, IfmGetRefMirrorVibration, IfmSetRefMirrorVibration, IfmSetAGC are for

the controlling of the mirror vibration and of the controller state.

Please note, for the adjusting of the laser signal the mirror vibration modulator and amplifier gain

controller should be set on.

The functions IfmWasBeamBreak, IfmWasLaserUnstable, IfmWasLostValues deliver the

information about possible error sources in the interferometer.

Manual of the dynamic link library siosifm.dll 58

4 Functions for the controlling of the interferometers

IfmGetAGC

Syntax

int IfmGetAGC(int devNumber,int channel)

Description

This function delivers the state of the controller for the according device and channel.

Input parameters

devNumber Unique ID for the device

channel channel number (from 0 up to 3)

Output parameters

zero for the state “controller is off”

or

1 for the state “controller is on”

Manual of the dynamic link library siosifm.dll 59

4 Functions for the controlling of the interferometers

IfmGetRefMirrorVibration

Syntax

int IfmGetRefMirrorVibration(int devNumber,int channel)

Description

This function delivers the state of the mirror vibration for the according device and channel.

Input parameters

devNumber Unique ID for the device

channel channel number (from 0 up to 3)

Output parameters

zero for the state “vibration is off”

or

1 for the state “vibration is on”

Manual of the dynamic link library siosifm.dll 60

4 Functions for the controlling of the interferometers

IfmNewSignalQualityAvailable

Syntax

int IfmNewSignalQualityAvailable(int devNumber)

Description

The device sends to the PC the service informations about the quality of the laser signals. The

period can be vary. Typical value is 500 ms. With the function IfmNewSignalQualityAvailable can

be tested whether the new quality signal values are arrived. See also IfmSignalQuality for detail

information about the quality signals.

Input parameters

devNumber Unique ID for the device

Output parameters

0 : signal quality parameters are not available

1 : signal quality parameters are available

Example

typedef struct
{
 int A1;
 int O1;
 int A2;
 int O2;
} QualityParameterType;

..........

void DisplaySignalQuality(int channelCount)
{

float x,y;

if(IfmNewSignalQualityAvailable(devNo))

Manual of the dynamic link library siosifm.dll 61

4 Functions for the controlling of the interferometers

{

for (int channel=0; channel<channelCount; channel++)
 {
 QualityParameterType qParam1;
 qParam1.A1=IfmSignalQuality(devNo,channel,IFM_SIGNALQ_A1);
 qParam1.A2=IfmSignalQuality(devNo,channel,IFM_SIGNALQ_A2);
 qParam1.O1=IfmSignalQuality(devNo,channel,IFM_SIGNALQ_O1);
 qParam1.O2=IfmSignalQuality(devNo,channel,IFM_SIGNALQ_O2);
 showSignalQuality(channel, qParam1);
 }
}

Explanation:

The function DisplaySignalQuality tests, whether the new signal quality values are available.

If it is true, the new parameters for the required channels will be read out and passed to the

function showSignalQuality.

Manual of the dynamic link library siosifm.dll 62

4 Functions for the controlling of the interferometers

IfmSetAGC

Syntax

int IfmSetAGC(int devNumber,int channel, int on)

Description

This function sets the state of the controller for the according device and channel. The switching

on of the controller has got a sense only if the the mirror vibration (modulator) is on too. See also

IfmSetRefMirrorVibration, IfmGetRefMirrorVibration, IfmGetAGC.

Input parameters

devNumber Unique ID for the device

channel channel number (from 0 up to 3)

on =0 means “the set the controller off”

=1 means “the set the controller on”

Output parameters

0 on success, an negative error number in case of an error

Manual of the dynamic link library siosifm.dll 63

4 Functions for the controlling of the interferometers

IfmSetRefMirrorVibration

Syntax

int IfmSetRefMirrorVibration(int devNumber,int channel, int on)

Description

The modulator on the interferometers generates a low-amplitude sinusoidal motion of the mirror on

their reference arm that will be needed at times, particularly when aligning them (Cf. the instruction

manual for the interferometer involved for instructions on aligning it).Their modulators may be left

switched on during many types of measurements, and will have to be switched off only if unfiltered

measurement data is to be recorded, since measurement errors might occur if they are left

switched on.

This function sets the state of the mirror vibration for the according device and channel.

Input parameters

devNumber Unique ID for the device

channel channel number (from 0 up to 3)

on =0 means “the set the modulator off”

=1 means “the set the modulator on”

Output parameters

0 on success, an negative error number in case of an error

Manual of the dynamic link library siosifm.dll 64

4 Functions for the controlling of the interferometers

IfmSignalQuality

Syntax

int IfmSignalQuality(int devNumber,int channel, int select)

Description

The function delivers the required value dependent on the input parameters.

The sampling period can be different. The typical value is 500 ms.

Please note, for the adjusting of the laser signal the mirror vibration modulator and amplifier gain

controller should be set on (See IfmSetRefMirrorVibration and IfmSetAGC)

Input parameters

devNumber Unique ID for the device

channel channel number (from 0 up to 3)

select possible selection (defined in siosifmdef.h):

Name Description Meaning

IFM_SIGNALQ_A1 Amplitude of the sine-

signal

Amplifier gain:

0: the best signal quality

255: the worst signal quality

IFM_SIGNALQ_O1 Offset of the sine-signal* Offset position:

127 (=50%): the best position

0, 255: the worst positions

IFM_SIGNALQ_A2 Amplitude of the cosine-

signal

Amplifier gain:

0: the best signal quality

255: the worst signal quality

IFM_SIGNALQ_O2 Offset of the cosine-signal* Offset position:

127 (=50%): the best position

0, 255: the worst positions

IFM_SIGNALQ_SUM Overall signal Amplitude signal quality in (0..100)% in both

channels together. The best value: 100%

IFM_SIGNALQ_FREQ Frequency of the Frequency in Hz

Manual of the dynamic link library siosifm.dll 65

4 Functions for the controlling of the interferometers

reference mirror vibrator

* A difference more than 40% between the sine-offset and cosine-offset signals indicates problems

in the optic adjustment. For the monitoring of the Lissajous figure please use the according

software “SignalMonitor.exe” or an oscilloscope. Please use the SIOS user's guide for the device

or contact a SIOS support for the solving of the problems.

See also IfmNewSignalQualityAvailable

Output parameters

Required value

Example

See IfmNewSignalQualityAvailable

Manual of the dynamic link library siosifm.dll 66

4 Functions for the controlling of the interferometers

IfmStatus

Syntax

int IfmStatus(int devNumber,int channel)

Description

This function delivers the information about the device status as well as about the possible

measuring error sources.

Input parameters

devNumber Unique ID for the device

channel channel number (from 0 up to 3)

Output parameters

The flags, which can be set (defined in “siosifmdef.h”):

The lower 16 bit are channel depended

IFM_STATUS_BEAMBREAK_QUADRANT miscount detected: the interferometer counter has

detected an invalid jump over more than one quadrants

IFM_STATUS_BEAMBREAK_LEVEL the signal amplitude is lower than a given threshold

so that miscounts are likely

IFM_STATUS_LASER_STABLE the laser(s) is(are) stable (only in systems with

 stabilized lasers)

IFM_STATUS_LASER_WAS_UNSTABLE since last IfmSetToZero the laser was at least one

 time unstable

The upper 16 bit are independent from the channel

IFM_STATUS_BUFFER_OVERFLOW_DEV the FIFO in the interferometer had an overflow; data

Manual of the dynamic link library siosifm.dll 67

4 Functions for the controlling of the interferometers

 loss by to large sample rate has occurred

IFM_STATUS_BUFFER_OVERFLOW_DLL the measurement value buffer in the DLL had an

 overflow; data loss by infrequent call of IfmGetValues

IFM_STATUS_BLOCKMODE the device is in block mode

IFM_STATUS_BAD_REQUEST the status request could not be answered, perhaps

 due to bad deviceNumber or invalid channel

Some bits in the status bit field indicate that the measurement in invalid and are reset only during

IfmSetToZero. But they could be cleared also by the user using the IfmDeviceInfo command with

the parameter IFM_DEVINFO_RESETSTATUS.

See also IfmWasBeamBreak, IfmWasLaserUnstable, IfmWasLostValues

Manual of the dynamic link library siosifm.dll 68

4 Functions for the controlling of the interferometers

IfmWasBeamBreak

Syntax

int IfmWasBeamBreak(int devNumber,int channel)

Description

This function checks whether the laser beam was broken in the according device and sensor

channel. It can cause a failed measurement.

Input parameters

devNumber Unique ID for the device

channel channel number (from 0 up to 3)

Output parameters

zero for the state “the beam was not broken”

or

1 for the state “the beam was broken”

Manual of the dynamic link library siosifm.dll 69

4 Functions for the controlling of the interferometers

IfmWasLaserUnstable

Syntax

int IfmWasLeaserUnstable(int devNumber,int channel)

Description

This function checks whether the laser was unstable in the according device and sensor channel.

An unstable laser is an error source for a measurement. This option is relevant only for the

stabilized laser.

Input parameters

devNumber Unique ID for the device

channel channel number (from 0 up to 3)

Output parameters

zero for the state “the laser was stable”

or

1 for the state “the laser was unstable”

Manual of the dynamic link library siosifm.dll 70

4 Functions for the controlling of the interferometers

IfmWasLostValues

Syntax

int IfmWasLostValues(int devNumber)

Description

This function checks whether the measuring values ware lost due to buffer overflow in the PC or

device. For the getting of exact information see IfmStatus.

Input parameters

devNumber Unique ID for the device

channel channel number (from 0 up to 3)

Output parameters

zero for the state “no measuring values were lost”

or

1 for the state “the measuring values were lost”

Manual of the dynamic link library siosifm.dll 71

5 Functions for the communication with other devices

5 Functions for the communication with other devices

Inside the interferometer most of the cards are connected via an I2C-bus. This section describes

functions for the communication with these cards via this bus. Basically each card provides a

memory area which can be written and read via I2C interface. The meaning of the different cells in

the I2C-memory area of the different cards is described in the appropriate documentation of the

card. Because of the meaning can also change with the firmware version of the cards their usage

requires a good documentation and a possible frequently update of the software.

This functions builds also the base API for a lot of other functions (for example motor control,

configuration etc.).

Don't use it without a suitable documentation about the target memory

 5.1 General functions
General functions are low-level functions for the access to the devices on the I2C-bus by read/write

operations or for the access to the input buffer after read-operation.

The functions are available in two versions: blocking and non blocking.

IfmI2CRead and IfmI2CWrite block until the operation is terminated which may take typically up to

200 ms. We recommend to use these function because their usage is easy.

IfmI2CRequestRead and IfmI2CRequestWrite return immediately but the availability of the results

must be polled. It's more complicated but the functions doesn't block and prevent freezing of the

user interface. We recommend these function for sophisticated users.

Manual of the dynamic link library siosifm.dll 72

5 Functions for the communication with other devices

IfmI2CRead

Syntax

int IfmI2CRead(int devNumber, int i2cAddr, int ramAddr, int count)

Description

This function requests a block of data from the I2C memory of a card in the interferometer.

The data will be written into an internal buffer on the PC. The read operation will take an

unpredictable time, typically between 100 and 200 milliseconds, while the function is waiting.

The internal buffer can be accessed via the the IfmI2CReadBuffer function.

It can occur that the reading operation cannot be done, for example due to high traffic on the I2C

bus. It is important to check the return value before reading out the buffer.

Input parameters

devNumber Unique ID for the device

i2cAddr the address of the card inside the interferometer

ramAddr the address inside the accessible memory of the card

count the amount of bytes that should be read

Output parameters

The function returns en error number and a zero in case of success.

Example

// read out a block of 4 bytes from the card with the I2C-Address 0x70
int error=IfmI2CRead(devNumber,0x70,0,4);
if(!error){

unsigned char *b=IfmI2CReadBuffer(devNumber);
printf(“I2C read: %2.2X %2.2X %2.2X %2.2X\n”,b[0],b[1],b[2],b[3]);

}

Manual of the dynamic link library siosifm.dll 73

5 Functions for the communication with other devices

IfmI2CRequestRead

Syntax

int IfmI2CRequestRead(int devNumber, int i2cAddr, int ramAddr, int count)

Description

This function requests a block of data from the I2C memory of a card of the interferometer.

The data will be written into an internal buffer on the PC. The read operation will take an

unpredictable time, typically between 100 and 200 milliseconds.

If the data are written into the internal buffer successfully, it can be polled with the

IfmI2CReadReady function.

The internal buffer can be accessed via IfmI2CReadBuffer function.

It can occur that the reading operation cannot be done, for example due to high traffic on the I2C

bus. So it should be set up a time out of approximately 200ms, after which the read request should

be considered as unsuccessfully, if the requested info is not available.

Input parameters

devNumber Unique ID for the device

i2cAddr the address of the card inside the interferometer

ramAddr the address inside the accessible memory of the card

count the amount of bytes that should be read

Output parameters

The function returns an error number or zero on success.

Example

See IfmI2CReadBuffer

Manual of the dynamic link library siosifm.dll 74

5 Functions for the communication with other devices

IfmI2CReadBuffer

Syntax

unsigned char *IfmI2CReadBuffer(int devNumber)

Description

The function gives access to the read buffer after the read operation from a I2C-device (see

IfmI2CRead, IfmI2CRequestRead).

Input parameters

devNumber Unique ID for the device

Output parameters

Pointer to a unsigned char field with the length of the requested memory block.

Manual of the dynamic link library siosifm.dll 75

5 Functions for the communication with other devices

IfmI2CReadValue

Syntax

unsigned char *IfmI2CReadValue(int devNumber, int index)

Description

The function gives access to the read buffer after the read operation from a I2C-device (see

IfmI2CRead, IfmI2CRequestRead).

Input parameters

devNumber Unique ID for the device

Output parameters

Unsigned char from the index of requested memory block

Example

// read out a block of 4 bytes from the card with the I2C-Address 0x70
int error=IfmI2CRead(devNumber,0x70,0,4);
if(!error){

printf(“I2C read: %2.2X %2.2X %2.2X %2.2X\n”,
IfmI2CReadValue(devNumber,0),
IfmI2CReadValue(devNumber,1),
IfmI2CReadValue(devNumber,2),
IfmI2CReadValue(devNumber,3));

}

Manual of the dynamic link library siosifm.dll 76

5 Functions for the communication with other devices

IfmI2CReadReady

Syntax

int IfmI2CReadReady(int devNumber)

Description

Test if a request to read (see IfmI2CRequestRead) was successfully and the data can be read out

(see IfmI2CReadBuffer).

Input parameters

devNumber Unique ID for the device

Output parameters

1: the read operation was successfully

0: the read operation is yet in progress or was not successfully

Manual of the dynamic link library siosifm.dll 77

5 Functions for the communication with other devices

IfmI2CRequestWrite

Syntax

int IfmI2CRequestWrite(int devNumber, int i2cAddr, int ramAddr, int count, unsigned char* buffer)

Description

This function does exactly the same as IfmI2CWrite but it doesn't wait until the writing operation

has been executed.

IfmI2CStatus can be used to check if and when the writing operation was successfully executed.

Manual of the dynamic link library siosifm.dll 78

5 Functions for the communication with other devices

IfmI2CStatus

Syntax

int IfmI2CStatus(int devNumber)

Description

This function returns the status of the last I2C-bus command.

IFM_ERROR_I2C_INUSE is returned while the I2C subsystem waits for the completion

of a read or write command.

IFM_ERROR_I2C_TIMEOUT indicates an error. The last command could not be processed

during the given time. It is possible but not likely that the

command was successfully after the timeout period.

IFM_ERROR_I2C_WRITE is returned when the last write command has failed.

Please refer also to the list of error codes in the chapter Error codes.

Manual of the dynamic link library siosifm.dll 79

5 Functions for the communication with other devices

IfmI2CWrite

Syntax

int IfmI2CWrite(int devNumber, int i2cAddr, int ramAddr, int count, unsigned char* buffer)

Description

This function writes a block of data to the I2C memory of a selected card. It will take some

milliseconds to complete the operation.

Input parameters

devNumber Unique ID for the device

i2cAddr the address of the card to be written

ramAddr the address inside the accessible memory of the card

count the amount of bytes that should be written

buffer the pointer to the data that should be written

Output parameters

The function returns an error number or zero on success.

Example

int WriteValueToI2CDevice(){
unsigned char b[4];
b[0]= 0xFF;
b[1]= 0xFA;
b[2]= 0x01;
b[3]= 0xC1;
return IfmI2CWrite(devNumber, 0x38, 0xAA, 4, b);

}

Explanation: At first in the function WriteValueToI2CDevice will be initialized a buffer with 4 bytes.

This buffer will be sent to a device with the I2C-address 0x38. In this device the data will be written

to the internal memory address 0xAA, 0xAB, 0xAC,0xAD.

Manual of the dynamic link library siosifm.dll 80

5 Functions for the communication with other devices

 5.2 Functions for the motor control card

not yet implemented

Manual of the dynamic link library siosifm.dll 81

6 Functions for the environment values

6 Functions for the environment values

A SIOS-interferometer can contain up to 4 cards (UW10, UW11 and so on) for measuring of

environment values like temperature, humidity and air pressure. Every card can have up to 6

sensors. The environment values will be periodically requested by the RE-10 or R-06 card and

automatically forwarded to the PC. These values will be used for the correction of the environment

influences to the measurement values (Edlen-correction) or can be used for user-specific

purposes.

The values of the sensors can be read by IfmSensorValue. IfmSensorProperty says which type of

sensor it concerns. This function informs also about the interferometer channels to which the

sensor belongs to. For iterating overt the environmental sensors the overall sensor count may be

usefully: See IfmEnvSensorCount.

The environment values which belong to a measurement channel can be read by the functions:

IfmAirPressure, IfmHumidity, IfmTemperature. Additional values are calculated for the correction

process (IfmWaterVapourPressure, IfmWavelength). The (device dependent) vacuum wavelength

is a basis parameter for the interferometric length measurement and is stored in the memory of the

the device.

When the SIOS-device doesn't have any environment cards or if no sensor is attached default

values for temperature (20°C), air pressure (101300 Pa) and humidity (50%) are used because it is

assumed that the measurement is made in air and a refraction correction (Edlen correction) is

necessary. For applications in vacuum the Edlen correction can be switched off by

IfmEnableEdlenCorrection.

If the user wants to use his own climate measurement, the environment values can be set

(IfmSetAirPressure, IfmSetHumidity, IfmSetTemperature as well as IfmSetWaterVapourPressure).

In this case the DLL ignores the according measured values from the interferometer.

The calculations rules on basis of Edlen-principle are represented in following equations*.

For the refraction correction of the influences of the temperature t and pressure p will be calculated

as follows:

n−1tp=
2.877555143880165⋅10−9⋅p

93214.60
⋅110−8⋅0.5953−0.009876⋅t ⋅p

10.0036610⋅t

*see G. Boensch and E. Potulski Fit of Edlen's formulae to measured values of the refractive

index of air

Manual of the dynamic link library siosifm.dll 82

6 Functions for the environment values

where t is current temperature in °C, p current air pressure in Pa.

As next will be the influences of humidity as partial pressure of water vapour (Magnus formula)

p℘=
h

100
⋅6.11213⋅exp 17.5043⋅t

241.2t


h is the current humidity in %.

The last step for the correction of the environment influences is the correction of wave length:

=
0

1ntp− p℘⋅3.7⋅10−10

0 is the wave length in vacuum. Usually this parameter is stored in the device configuration.

There is also a possibility to read/write of the scaling factor by the functions IfmConversionCoeff

and IfmSetConvertionCoeff. This factor is used for conversion of the interferometer counter values

to the length values.

On every measuring value is additionally applied the dead path correction. Dead path is the space

between the interferometer’s sensor head (Pos.1 at Figure 4) and the zero point for the

measurements (Pos. 2 at Figure 4) to be performed. Since changes in ambient conditions change

the refractive index of ambient air, and thus change the laser wavelength, entire stretch between

its sensor head and the moving mirror must be taken into account when computing corrections to

the laser wavelength.

By zero sitting on the Pos.1 is the Lt=0.

Manual of the dynamic link library siosifm.dll 83

Figure 4: Dead path correction

Lt

Pos.1 Pos.2

6 Functions for the environment values

The calculation rule for the dead path correction describes the following equation:

Lcorr=−Lt⋅1−
n0

n
 , nm

n0 is the air refraction at the time where IfmSetToZero was called.

 n is the actual air refraction.

The setting of the dead path value is provided by the function IfmSetDeadPath . By

IfmDeadpathCoeff can be read this setting . Like prementioned this function should be applied

directly before the function IfmSetToZero.

The finally equation for the calculating of the length values in nanometers describes the following

term:

 L=−Lcorrk⋅xadc , nm

k is the scaling factor, which depends on the environmental values, the gain of the selected

filters and a device type specific factor.

xadc Is a measured counter value.

Manual of the dynamic link library siosifm.dll 84

6 Functions for the environment values

IfmAirPressure

Syntax

double IfmAirPressure(int devNumber, int channel)

Description

This function returns the currently used air pressure value for the given channel. If it not set

manually, the measured air pressure is returned. If no air pressure could be measured (no

environment card or no sensor connected) a default value of 101300 Pa is returned.

 See also: IfmSetAirPressure

Input parameters

devNumber Unique ID for the device

channel Channel number

Output parameters

The air pressure value in Pa for required device and channel.

Manual of the dynamic link library siosifm.dll 85

6 Functions for the environment values

IfmAirPressureFlags

Syntax

int IfmAirPressureFlags(int devNumber, int channel)

Description

This function returns the information about the sensor mask, source and state of the measured air

pressure value.

Input parameters

devNumber Unique ID for the device

channel Channel number

Output parameters

The following flags can be set:

IFM_ENVIRFLAG_SENSORMASK in this byte is coded the sensor number (from 0 up to 23)

 from which sensor comes the measured value

IFM_ENVIRFLAG_MEASURED the value was measured; when this flag is not set, it's a

 default value

IFM_ENVIRFLAG_CURRENT the value was measured with the last data set

 (in a typical configuration it's not older than 4 seconds)

IFM_ENVIRFLAG_MANUAL value was given manually by IfmSetAirPressure function

This flags are in the “siosifmdef.h” defined.

Example

void GetAirPressureValue(int devNumber,int channel){
int flags=IfmAirPressureFlags(devNumber,channel);
printf("The air pressure sensor is on the position %d\n",

(flags & IFM_ENVIRFLAG_SENSORMASK));

Manual of the dynamic link library siosifm.dll 86

6 Functions for the environment values

if (flags & IFM_ENVIRFLAG_MEASURED)
printf("Value is measured\n");

else if (flags & IFM_ENVIRFLAG_MANUAL)
printf("Value is set manual\n");

else printf("Default value\n");

double value=IfmAirPressure(int devNumber, int channel);
printf("Current air pressure value: %f\n", value);

}

Explanation:

At the beginning the procedure GetAirPressureValue calls the function

IfmAirPressureFlags. The delivered information will be decoded and printed. Then the actual

air pressure value will be required by IfmAirPressure and printed.

Manual of the dynamic link library siosifm.dll 87

6 Functions for the environment values

IfmAirRefraction

Syntax

double IfmAirRefraction(int devNumber, int channel)

Description

This function returns the actual calculated air refraction index for the given channel.

 See also the description of the environment correction: Functions for the environment values

Input parameters

devNumber Unique ID for the device

channel Channel number

Output parameters

The air refraction index for requested device and channel.

Manual of the dynamic link library siosifm.dll 88

6 Functions for the environment values

IfmConversionCoeff

Syntax

double IfmConversionCoeff(int devNumber, int channel)

Description

This function returns the currently used conversion factor. It's the multiplier to calculate the length

in nanometres from the interferometer counts and it depends on the environmental values, the gain

of the selected filters and a device type specific factor. The conversation factor is calculated

automatically by the DLL but the user can set it also manually. See also: IfmSetConvertionCoeff

and two last the equations in the part Functions for the environment values

Input parameters

devNumber Unique ID for the device

channel Channel number

Output parameters

Current conversion coefficient of the requested device and channel.

Manual of the dynamic link library siosifm.dll 89

6 Functions for the environment values

IfmDeadpathCoeff

Syntax

double IfmDeadpathCoeff(int devNumber, int channel)

Description

This function returns the currently used dead path coefficient. It's the summand to dead path

correction of the environment corrected length in nanometres.

See also: IfmSetDeadPath and two last equations in the part Functions for the environment

values.

Input parameters

devNumber Unique ID for the device

channel Channel number

Output parameters

Current dead path coefficient of the requested device and channel.

Manual of the dynamic link library siosifm.dll 90

6 Functions for the environment values

IfmEnableEdlenCorrection

Syntax

void IfmEnableEdlenCorrection(int devNumber, int channel, int on)

Description

Via this function can be enabled or disabled the correction for the refraction index of the air and the

true wavelength of the laser light as the reference for the length measurement (the so called

Edlen-correction). If the parameter on is set to 0 , the correction will not be applied and the user

gets the uncorrected measurement values like for a measurement in vacuum. Otherwise the

correction will be made. See also: IfmIsEdlenEnabled.

Input parameters

devNumber Unique ID for the device

channel Channel number

on 1=enable, 0=disable

Output parameters

none

Manual of the dynamic link library siosifm.dll 91

6 Functions for the environment values

IfmEnvSensorCount

Syntax

unsigned int IfmEnvSensorCount(int devNumber)

Description

This function returns the count of the sensors which are currently configured for use with the

interferometer. The configuration is stored in the device. Normally this value is required for iterating

over the sensors with IfmSensorProperty and IfmSensorValue.

The maximum count is 24 (4 cards with maximum 6 sensors each).

See also IfmSensorProperty.

Input parameters

devNumber Unique ID for the device

Output parameters

if returning value >=0 the count of the sensors in all available environment cards

otherwise Error code

Manual of the dynamic link library siosifm.dll 92

6 Functions for the environment values

IfmHumidity

Syntax

double IfmHumidity(int devNumber, int channel)

Description

This function returns the currently used humidity value for the given channel. If it not set manually,

the measured humidity is returned. If no humidity could be measured (no environment card or no

sensor connected) a default value of 50% is returned.

See also IfmSetHumidity

Input parameters

devNumber Unique ID for the device

channel Channel number

Output parameters

The actual humidity value in % for the requested device and channel.

Manual of the dynamic link library siosifm.dll 93

6 Functions for the environment values

IfmHumidityFlags

Syntax

int IfmHumidityFlags(int devNumber, int channel)

Description

This function returns the information about the sensor mask, source and state of the measured

humidity value.

Input parameters

devNumber Unique ID for the device

channel Channel number

Output parameters

The following flags are possible:

IFM_ENVIRFLAG_SENSORMASK in this byte is coded the sensor number (from 0 up to 23)

 from which sensor comes the measured value

IFM_ENVIRFLAG_MEASURED the value was measured; when this flag is not set, it's a

 default value

IFM_ENVIRFLAG_CURRENT the value was measured with the last data set

 (in a typical configuration it's not older than 4 seconds)

IFM_ENVIRFLAG_MANUAL value was given manually by IfmSetHumidity function

This flags are in the “siosifmdef.h” defined.

See also a similar example in the part IfmAirPressureFlags

Manual of the dynamic link library siosifm.dll 94

6 Functions for the environment values

IfmIsEdlenEnabled

Syntax

int IfmIsEdlenEnabled(int devNumber,int channel)

Description

This function will return 1, if the Edlen-correction is enabled, otherwise it will return 0.

See also IfmEnableEdlenCorrection

Input parameters

devNumber Unique ID for the device

channel Channel number

Output parameters

1 if the correction is enabled

0 if the correction is disabled

Manual of the dynamic link library siosifm.dll 95

6 Functions for the environment values

IfmGetDeadPath

Syntax

int IfmGetDeadPath(int devNumber, int channel)

Description

The function returns the active dead path for the given channel in mm. Because the dead path is

set before IfmSetToZero and the dead path can be changed in the interferometer (for instance in

Laser-tracers), the returned value may be different from the value set by IfmSetDeadPath

The dead path is always positive. A negative value is an error number.

Input parameters

devNumber Unique ID for the device

channel Channel number

Output parameters

The dead pass value if positive or 0

an error code if negative

Manual of the dynamic link library siosifm.dll 96

6 Functions for the environment values

IfmNewEnvValuesAvailable

Syntax

int IfmNewEnvValuesAvailable(int devNumber)

Description

This function will return 1, if the new measured environment values are available. Then this values

can be read by the functions: IfmAirPressure, IfmHumidity and IfmTemperature.

Input parameters

devNumber Unique ID for the device

Output parameters

1 if the new values are available

0 otherwise

Example

double P;
double H;
double T1,T2;

if (IfmNewEnvValuesAvailable(devNumber)){
P=IfmAirPressure(0,0);
H=IfmHumidity(0,0);
T1=IfmTemperature(0,0);
T2=IfmTemperature(0,1);
.....

}

Explanation:

The device has got two channels (0 and 1). There are only one sensor for air pressure and

humidity but individual temperature sensors for each channel.

After testing for new environment values (IfmNewEnvValuesAvailable), all environment values will

be read out.

Manual of the dynamic link library siosifm.dll 97

6 Functions for the environment values

IfmResetManualEnvironment

Syntax

void IfmResetManualEnvironment(int devNumber,int channel)

Description

After setting user environment values (IfmSetTemperature, IfmSetAirPressure, IfmSetHumidity,

IfmSetConvertionCoeff) this function switches back the environment values to the values

measured by the interferometer. It means, all values (temperature, air pressure, humidity, water

vapour as well as coefficients), that were set manually by functions IfmSetTemperature,

IfmSetAirPressure, IfmSetHumidity, IfmSetConvertionCoeff will be refused and the DLL takes the

measured values for the calculation of Edlen-correction and the scaling coefficient for the

conversion the digits to length values.

Input parameters

devNumber Unique ID for the device

channel Channel number

Output parameters

none

Manual of the dynamic link library siosifm.dll 98

6 Functions for the environment values

IfmSensorProperty

Syntax

unsigned int IfmSensorProperty(int devNumber, int sensor)

Description

This function queries the types of the environment sensors, that are available in the whole device

with the unique ID devNumber. The device can contain up to 24 environment sensors. The

returned value has got a length of 1 byte. The mapping of this byte represents the Figure 5:

corr is a bit, that indicates, whether the sensor's measuring values will be taken for the Edlen-

correction

type are three bits for the sensor type description (see output parameters)

channel are four bits, that shows the channel belonging (see output parameters)

The matched constants are defined in the header “siosifmdef.h”.

Input parameters

devNumber Unique ID for the device

sensor Sensor number (0..23)

Output parameters

corr – bit:

Manual of the dynamic link library siosifm.dll 99

Figure 5: The structure of the returned sensor property

corr type channel

b7 b6 b5 b4 b3 b2 b1 b0

6 Functions for the environment values

0 The value will not be taken for Edlen correction

1 The value will be taken for Edlen correction

type of the sensor:

1 Temperature sensor

2 Humidity sensor

3 Air pressure sensor

Channel-flags:

0 The sensor is not associated with according channel *

1 The sensor is associated with according channel *

* The bit number is equal the channel number. So bit 0 (b0 on the Figure 5) shows belonging to

channel 0, bit 1: to channel 1 and so on.

The constants from the header “siosifmdef.h”:

• Type of the Sensor:

identifier: meaning

IFM_ENVIR_SENSOR_TEMP 0x10

IFM_ENVIR_SENSOR_HUMIDITY 0x20

IFM_ENVIR_SENSOR_AIRPRESSURE 0x30

• Channel belonging:

IFM_ENVIR_CHANNEL1 0x01

IFM_ENVIR_CHANNEL2 0x02

IFM_ENVIR_CHANNEL3 0x04

IFM_ENVIR_CHANNEL4 0x08

• Flag to mark the values for Edlen-correction

IFM_ENVIR_EDLEN 0x80

Example

int tempSensorCounter=0;

Manual of the dynamic link library siosifm.dll 100

6 Functions for the environment values

unsigned int tempSensorID[4];
unsigned int humiditySensorID;
unsigned int airPressureSensorID;

void searchEnviromentsSensorIDs(){
unsigned int idn=0;
int N=IfmEnvSensorCount(devNr);
if (N>0)
{

for (int ii=0;ii<N;ii++){
idn=IfmSensorProperty(devNr, ii);
if (idn & IFM_SENSOR_MASK)==IFM_ENVIR_SENSOR_TEMP) {

tempSensorID[tempSensorCounter]=ii;
tempSensorCounter++;
}

if (idn & IFM_SENSOR_MASK)==IFM_ENVIR_SENSOR_HUMIDITY)
 humiditySensorID=ii;

if ((idn & IFM_SENSOR_MASK)==IFM_ENVIR_SENSOR_AIRPRESSURE)
airPressureSensorID=ii;

}
}

}

Explanation: In a SIOS-Unique ID for the device devNr are six environment sensors available: four

temperature sensors, one humidity sensor and one air pressure sensor. With the procedure

searchEnviromentsSensorIDs will be searched the identifiers of these sensors. At the begin will be

tested, how many sensors are really available (function IfmEnvSensorCount). If this function

returns a value>0, the identifiers will saved to the according value.

Manual of the dynamic link library siosifm.dll 101

6 Functions for the environment values

IfmSensorValue

Syntax

double IfmSensorValue(int devNumber, int sensor)

Description

This function returns the measured environment value according to the sensor number. See

IfmSensorProperty for detail information.

Input parameters

devNumber Unique ID for the device

sensor Sensor number

Output parameters

Requested value.

Manual of the dynamic link library siosifm.dll 102

6 Functions for the environment values

IfmSetAirPressure

Syntax

void IfmSetAirPressure(int devNumber, int channel, double value)

Description

This function is used for the manual setting of the air pressure value.

Attention! The dll takes this value for the Edlen-correction. The measured

value (if available) will be ignored, until the user calls

 IfmResetManualEnvironment or the dll will be reinitialized again.

If the user does not set the manual value and the measured values are not available, the dll takes

the default value 101300 Pa. The current value can be read by IfmAirPressure.

Input parameters

devNumber Unique ID for the device

channel Channel number

value Air pressure value to be set

Output parameters

none

Manual of the dynamic link library siosifm.dll 103

6 Functions for the environment values

IfmSetConvertionCoeff

Syntax

void IfmSetConvertionCoeff(int devNumber, int channel, double value)

Description

This function is used for the manual setting of the coefficient for the conversion of the digits to the

length values for the according device and channel. The default value will be ignored, until the user

calls IfmResetManualEnvironment or the dll will be reinitialized again.

The actual coefficients can be read by IfmConversionCoeff.

Input parameters

devNumber Unique ID for the device

channel Channel number

value Coefficient to be set

Output parameters

none

Manual of the dynamic link library siosifm.dll 104

6 Functions for the environment values

IfmSetDeadPath

Syntax

int IfmSetDeadPath(int devNumber, int channel, int deadPath)

Description

This function is used for the setting of the dead path value. Usually this value should be set

directly before the command IfmSetToZero because this setting will be transferred to the device

together with the settings for the zero point.

Input parameters

devNumber Unique ID for the device

channel Channel number

deadPath dead path value in mm

Output parameters

The function returns an error number or zero on success.

Manual of the dynamic link library siosifm.dll 105

6 Functions for the environment values

IfmSetHumidity

Syntax

void IfmSetHumidity(int devNumber, int channel, double value)

Description

This function is used for the manual setting of the humidity value for the Edlen correction for the

according device and channel.

Attention! The dll takes this value for the Edlen-correction. The measured

value (if available) will be ignored, until the user calls

IfmResetManualEnvironment or the dll will be reinitialized again.

If the user dos not set a manual value and the measured values are not available, the dll will take

the default value 50% for the correction. The current value can be read by IfmHumidity.

Input parameters

devNumber Unique ID for the device

channel Channel number

value Value to be set

Output parameters

none

Manual of the dynamic link library siosifm.dll 106

6 Functions for the environment values

IfmSetTemperature

Syntax

void IfmSetTemperature(int devNumber, int channel, double value)

Description

This function is used for the manual setting of the temperature value for the Edlen correction for

the according device and channel.

Attention! The dll takes this value for the Edlen-correction. The measured

value (if available) will be ignored, until the user calls

IfmResetManualEnvironment or the dll will be reinitialized again.

If the user dos not set the manual value and the measured values are not available, the dll will take

the default value 20°C for the correction. The current value can be read by IfmTemperature.

Input parameters

devNumber Unique ID for the device

channel Channel number

value Value to be set

Output parameters

none

Manual of the dynamic link library siosifm.dll 107

6 Functions for the environment values

IfmSetWavelength

Syntax

void IfmSetWavelength(int devNumber, int channel, double value)

Description

This function is used for the manual setting of the corrected wave length value for the Edlen

correction for the according device and channel.

Attention! The dll takes this value for the Edlen-correction. The measured

value (if available) will be ignored, until the user calls

IfmResetManualEnvironment or the dll will be reinitialized again.

The wavelength is the result of the Edlen-correction, which is based on the vacuum wavelength

and the environmental values temperature, air pressure and humidity. If the wavelength is set

manually, the Edlen-correction will be overwritten.

Input parameters

devNumber Unique ID for the device

channel Channel number

value Value to be set

Output parameters

none

Manual of the dynamic link library siosifm.dll 108

6 Functions for the environment values

IfmSetWaterVapourPressure

Syntax

void IfmSetWaterVapourPressure(int devNumber, int channel, double value)

Description

This function is used for the manual setting of the vapour pressure value for the Edlen correction

for the according device and channel.

Attention! The dll takes this value for the Edlen-correction. The by default

 calculated value will be ignored, until the user calls

IfmResetManualEnvironment or the dll will be initialized again.

The actual value can be read by IfmWaterVapourPressure.

Input parameters

devNumber Unique ID for the device

channel Channel number

value Value to be set

Output parameters

none

Manual of the dynamic link library siosifm.dll 109

6 Functions for the environment values

IfmTemperature

Syntax

double IfmTemperature(int devNumber, int channel)

Description

This function returns the currently used temperature value for the given channel. If not set

manually, the measured temperature is returned. If no temperature could be measured (no

environment card or no sensor connected) a default value of 20 °C is returned.

This function returns only the temperature value of sensors which are dedicated to an

interferometer channel for the Edlen correction. The values of other temperature sensors, like

sensors for the material temperature, must be requested by IfmSensorValue, whereas the sensor

place must be known.

See also IfmSetTemperature.

Input parameters

devNumber Unique ID for the device

channel Channel number

Output parameters

The requested temperature value in °C for the corresponding device and channel.

Manual of the dynamic link library siosifm.dll 110

6 Functions for the environment values

IfmTemperatureFlags

Syntax

int IfmTemperatureFlags(int devNumber, int channel)

Description

This function returns the information about the sensor mask, source and state of the measured

temperature value.

Input parameters

devNumber Unique ID for the device

channel Channel number

Output parameters

The following flags are possible:

IFM_ENVIRFLAG_SENSORMASK in this byte is coded the sensor number (from 0 up to 23)

 from which sensor comes the measured value

IFM_ENVIRFLAG_MEASURED the value was measured; when this flag is not set, it's a

 default value

IFM_ENVIRFLAG_CURRENT the value was measured with the last data set

 (in a typical configuration it's not older than 4 seconds)

IFM_ENVIRFLAG_MANUAL value was given manually by IfmSetTemperature function

This flags are in the “siosifmdef.h” defined.

See also a similar example in the part IfmAirPressureFlags

Manual of the dynamic link library siosifm.dll 111

6 Functions for the environment values

IfmVacuumWavelength

Syntax

double IfmVacuumWavelength(int devNumber, int channel)

Description

This function returns currently used vacuum wave length value, that is saved in the configuration of

the devices.

Input parameters

devNumber Unique ID for the device

channel Channel number

Output parameters

The the requested value for the corresponding device and channel.

Manual of the dynamic link library siosifm.dll 112

6 Functions for the environment values

IfmWaterVapourPressure

Syntax

double IfmWaterVapourPressure(int devNumber, int channel)

Description

This function returns currently used water vapour pressure value, that was calculated on the basis

of the environment values or was set by user with the function IfmSetWaterVapourPressure.

Input parameters

devNumber Unique ID for the device

channel Channel number

Output parameters

The the requested value for the corresponding device and channel.

Manual of the dynamic link library siosifm.dll 113

6 Functions for the environment values

IfmWavelength

Syntax

double IfmWavelength(int devNumber, int channel)

Description

This function returns corrected wave length value, that was calculated on the basis of Edlen-

correction.

devNumber Unique ID for the device

channel Channel number

Output parameters

The the requested value for the corresponding device and channel.

Manual of the dynamic link library siosifm.dll 114

7 Extended functions

7 Extended functions

IfmAuxValue

Syntax

int IfmAuxValue(int devNumber,int channel,int valueType)

Description

The function returns specific measurement values, like sine, cosine, AD-conversion values as

digits, test pattern, from the input buffer. Usually this function will be used in the same manner as

IfmLengthValue after one of the functions IfmGetRecentValues or IfmGetValues.

Please note: To get one of the special values the transmission of these values must be requested

with the IfmSetMeasurement function. Otherwise always zero is returned.

Input parameters

devNumber Unique ID for the device

channel Channel number

valueType Type of the requested information. Following types are

possible:

IFM_VALUETYPE_SIN sine will be needed for Lissajous-figure

IFM_VALUETYPE_ADC1 AD-conversion values (from ADC1)

IFM_VALUETYPE_COS cosine will be needed for Lissajous-figure

IFM_VALUETYPE_ADC2 AD-conversion values (from ADC2)

IFM_VALUETYPE_NORM magnitude of the laser signal

IFM_VALUETYPE_TESTPATTERN test pattern (device specific, the values 0x00FF, 0xFF00,

0x5555, 0xAAAA are possible)

IFM_VALUETYPE_CLOCKCOUNT returns the value of a 50 MHz clock counter as a time stamp

 for the sample

IFM_VALUETYPE_COUNTER same as IFM_VALUETYPE_CLOCKCOUNT

IFM_VALUETYPE_SAMPLECOUNT

Manual of the dynamic link library siosifm.dll 115

7 Extended functions

returns the samplecount, a running number for each sample,

can be used to detect missing samples

IFM_VALUETYPE_PSD_X lateral displacement measured with a PSD in 10nm steps

x direction

IFM_VALUETYPE_PSD_Y y direction

IFM_VALUETYPE_PSDRAW_X PSD value without normalisation,

normal range is between -0x2000 and +0x2000

x direction

IFM_VALUETYPE_PSDRAW_Y y direction

IFM_VALUETYPE_PSD_SUM energy on the PSD

Output parameters

the requested parameter

Example

IfmSetMeasurement(devNo,IFM_MEAS_LENGTH|IFM_MEAS_SINCOS|
IFM_MEAS_FILTER_NONE,10000);
IfmStart(devNo);
...
int count=IfmValueCount(devNo);
if(count>0){

int x,y;
for(int i=0;i<count;i++){
IfmGetRecentValues(devNo,i);
x=IfmAuxValue(devNo,0,IFM_VALUETYPE_SIN);
y=IfmAuxValue(devNo,0,IFM_VALUETYPE_COS);
lissajousWindow->SetPoint(x,y);

}
}

Explanation: At the beginning the program tests, whether the device with unique ID fdevNo has

sent measurement values. If the IfmValueCount returns the value>0, the values will be read out

from the input puffer (function IfmGetRecentValues) in according to LIFO (last-in-first-out) principle.

The sine and cosine values will be picked up from the DLL-buffer and forwarded to the object

lissajousWindow.

Manual of the dynamic link library siosifm.dll 116

7 Extended functions

IfmChannels

Syntax

int IfmCannels(int devNumber)

Description

The function returns the count in the device available channels.

Input parameters

devNumber Unique ID for the device

Output parameters

Required information if the answer >=0

or

error code otherwise

Manual of the dynamic link library siosifm.dll 117

7 Extended functions

IfmDeviceInfo

Syntax

int IfmDeviceInfo(int devNumber, int requestedInfo)

Description

The function requests current device parameters.

The requested parameter is returned as an integer or – if this is not possible or makes no sense –

as a pointer to the parameter. Please read the following description to typecast to the right type.

Depending of the device type or the firmware version different information may not be available. In

this case an 0 is returned. Please check the return value, especially if a pointer should be returned.

Input parameters

devNumber Unique ID for the device

requestedInfo Following parameters can be requested:

 IFM_DEVINFO_SRATE current sample rate (the sample rate before the

reducing filters)

 IFM_DEVINFO_OUTRATE output word rate, sample rate after the filter stage, may

slightly differ from the requested rate in

IfmSetMeasurement due to limited divider resolution

 IFM_DEVINFO_FILTERFLAGS filter flags, like set by IfmSetFilter

 IFM_DEVINFO_MEASUREMENTFLAGS measurement flags, like set by IfmSetMeasurement

 IFM_DEVINFO_TRIGGERMODE trigger mode, like set by IfmSetTrigger or or saved in

the flash

 IFM_DEVINFO_AVG1 filter option for the average 1, like set by IfmSetFilter

 IFM_DEVINFO_AVG2 filter option for the average 2, like set by IfmSetFilter

 IFM_DEVINFO_CMDDELAY delay in ms between the transmission of two

commands

Manual of the dynamic link library siosifm.dll 118

7 Extended functions

IFM_DEVINFO_AVAILABLE After opening the device the DLL reads out the

settings from the device. This parameter signals with a

return code of 1, that the configuration is available.

IFM_DEVINFO_SERIALNUMBER returns the USB-serial number; like

IfmUSBDeviceSerial but with an open device

IFM_DEVINFO_READY returns 1 if the device is ready for start the

measurement

IFM_DEVINFO_I2CTIMEOUT returns the timeout in ms for I2C operations

IFM_DEVINFO_VERSIONSTRING returns the firmware version number (an integer !!

between 1 and 255) of the RE-10

IFM_DEVINFO_FPGAVERSION Version of the programmable hardware (FPGA)

IFM_DEVINFO_OUTRATE_POINTER Pointer (!) to a double value, containing the

real OWR in higher resolution

IFM_DEVINFO_LINKEDCHANNELS1 wich channels are linked to calculate an angle

pair 1, see IfmAngleValue

IFM_DEVINFO_LINKEDCHANNELS2 wich channels are linked to calculate an angle

pair 2, see IfmAngleValue

IFM_DEVINFO_BASEDISTANCE1_POINTER

base distance in mm of the linked channels, for pair 1

returns a pointer to a double value

IFM_DEVINFO_BASEDISTANCE2_POINTER

base distance in mm of the linked channels, for pair 2

returns a pointer to a double value

IFM_DEVINFO_LAST_I2C_CARDADDR the card address of the active or last I2C request

IFM_DEVINFO_LAST_I2C_MEMADDR memory address of the active or last I2C request

IFM_DEVINFO_SRATE_POINTER returns a pointer to a double value,
which holds the exact sample rate

IFM_DEVINFO_PSD_COUNT count of the available PSD-Sensors
(lateral shift sensors)

IFM_DEVINFO_PSD_TYPE type of PSD implementation
0: no PSD available

Manual of the dynamic link library siosifm.dll 119

7 Extended functions

1: PSD-04 cards, slow data rate up to 4 Hz
2: special ADU card with higher sample rate

Output parameters

requested parameter, if it is available and the function is correct

or

0 otherwise

Example

int deviceDelay= IfmDeviceInfo(0, IFM_DEVINFO_CMDDELAY);

Explanation:

The value deviceDelay contains the information about the delay between transmitted commands in

device with unique ID 0.

Manual of the dynamic link library siosifm.dll 120

7 Extended functions

IfmDeviceInterface

Syntax

int IfmDeviceInterface(int devNumber)

Description

The function returns the device interface, which the device is connected to.

Input parameters

devNumber Unique ID for the device

Output parameters

The device types are defined in “siosifmdef.h”

IFM_INTERFACE_NONE No information about interface type

IFM_INTERFACE_DEMO The demo-application runs

IFM_INTERFACE_RS232 RS232-interface is configured

IFM_INTERFACE_USB USB-interface is configured

IFM_INTERFACE_NET Ethernet-interface is configured

Manual of the dynamic link library siosifm.dll 121

7 Extended functions

IfmDeviceType

Syntax

int IfmDeviceType(int devNumber)

Description

The function returns the device type.

Input parameters

devNumber Unique ID for the device

Output parameters

The device types are defined in “siosifmdef.h”

IFM_TYPE_NONE No information about the device type

IFM_TYPE_DEMO The demo-application runs

IFM_TYPE_RE10 The device type is the RE-10-card

IFM_TYPE_RE06 The device type is the RE-06-card

Manual of the dynamic link library siosifm.dll 122

7 Extended functions

IfmDeviceValid

Syntax

int IfmDeviceValid(int devNumber)

Description

The function checks whether the device ID devNumber is correct.

Input parameters

devNumber Unique ID for the device

Output parameters

0 the device dos not exist

1 the device is ok

Manual of the dynamic link library siosifm.dll 123

7 Extended functions

IfmDLLVersionString

Syntax

const char *IfmDLLVersionString()

Description

The function returns a pointer to a char field with the DLL name and version number.

Input parameters

No input parameters

Manual of the dynamic link library siosifm.dll 124

7 Extended functions

IfmFireTrigger

Syntax

int IfmFireTrigger(int devNumber)

Description

The function returns one measuring value.

Input parameters

devNumber Unique ID for the device

Output parameters

Required information

Manual of the dynamic link library siosifm.dll 125

7 Extended functions

IfmFirmwareVersion

Syntax

int IfmFirmwareVersion(int devNumber)

Description

The function returns the version number of the firmware for required device.

Input parameters

devNumber Unique ID for the device

Output parameters

Required information

Manual of the dynamic link library siosifm.dll 126

7 Extended functions

IfmGetError

Syntax

int IfmGetError()

Description

The function returns the first error number after last calling of this function.

See also the part Error codes and IfmGetErrorString.

Input parameters

No input parameters.

Output parameters

Error number.

Manual of the dynamic link library siosifm.dll 127

7 Extended functions

IfmGetErrorString

Syntax

const char *IfmGetErrorString(int errorNumber)

Description

The function returns the a pointer to a char field with the description of the error with required

errorNumber.

See also the part IfmGetError.

Input parameters

errorNumber a negative integer value

Output parameters

A pointer to a char field.

Manual of the dynamic link library siosifm.dll 128

7 Extended functions

IfmRawValue

Syntax

int64 IfmRawValue(int devNumber,int channel)

Description

Normally the measurement values from the interferometer are read out in nm. But in principle the

interferometer measures the displacement in counts. This function returns the raw counts before

they are converted in nm.

Usually this function will be used in the same manner as IfmLengthValue after one of the functions

IfmGetRecentValues or IfmGetValues.

Input parameters

devNumber Unique ID for the device

channel Channel number

Output parameters

0: no values are available

or

Requested value

Example

if (IfmValueCount(devNo)>0)
{

IfmGetRecentValues(devNo,0);
int64 value_channel _0= IfmRawValue(devNo,0);
int64 value_channel _1= IfmRawValue(devNo,1);

}

Explanation: if the measuring values are available (IfmValueCount(devNo)>0) , the last counter

values for channel 0 and 1 will be read out.

Manual of the dynamic link library siosifm.dll 129

7 Extended functions

IfmResetDevice

Syntax

void IfmResetDevice(int devNumber)

Description

The function causes the software reset of the according card.

Alike after hardware reset, the device stops after this command all running processes and

breaks all connections. The USB-interface have to be reinitialized and the device have to be

reconfigured by user again.

Input parameters

devNumber Unique ID for the device

Output parameters

No output parameters

Manual of the dynamic link library siosifm.dll 130

7 Extended functions

IfmSetDeviceInfo

Syntax

int IfmSetDeviceInfo(int devNumber, int infoNo, int newValue)

Description

This function sets some device parameters which can be read by IfmDeviceInfo. It can be used

instead of IfmSetFilter and IfmSetTrigger and additionally for the setting of other parameters like

IFM_DEVINFO_CMDDELAY. For the setting of trigger and filter options this function should be

called before IfmSetMeasurement.

Input parameters

devNumber Unique ID for the device

newValue The value to be setted

infoNo The parameter id which should be set

newValue The new value for the parameter

The following parameters can be set: IFM_DEVINFO_OUTRATE, IFM_DEVINFO_FILTERFLAGS,

IFM_DEVINFO_MEASUREMENTFLAGS, IFM_DEVINFO_TRIGGERMODE,

IFM_DEVINFO_AVG1, IFM_DEVINFO_AVG2, IFM_DEVINFO_CMDDELAY,

IFM_DEVINFO_I2CTIMEOUT.

For the meaning of these parameters please refer IfmDeviceInfo.

With IFM_DEVINFO_RESETSTATUS the device status can be reset. newValue is a mask for the

bits that should be cleared.

Output parameters

Zero on success or an error number is returned.

Manual of the dynamic link library siosifm.dll 131

7 Extended functions

Example

int error= IfmSetDeviceInfo(0, IFM_DEVINFO_CMDDELAY, 200);

Explanation:

 this function sets the delay=200 ms between transmitted command.

Manual of the dynamic link library siosifm.dll 132

7 Extended functions

IfmSetOption

Syntax

int IfmSetOption(int option, int param1)

Description

The function modifies some behaviour of the library. It should be called before IfmInit to take effect.

Input parameters

option Following parameters can be requested:

 IFM_ OPTION_DEBUGFILES If param1 is set to 1 the library creates some text files

with debug informations

 IFM_OPTION_POLLSELF Normally the library starts a thread and calls IfmPoll

frequently in this thread. If param1 is set to 1, no

thread is started and IfmPoll must be called by the

application. Use with care!

 IFM_OPTION_BLOCKONCLOSE Normally a device will be destroyed some times after

closing it. If param1 is set to 1 IfmCloseDevice will

wait until the device is closed and destroyed before

returning.

Output parameters

Zero on success or an error number is returned.

Manual of the dynamic link library siosifm.dll 133

8 Functions for the service

8 Functions for the service

IfmSaveConfigDevice

Syntax

void IfmSaveConfigDevice(int devNumber)

Description

The function saves the current measurement settings into the flash.

The saved parameter will be applied after the next device reset.

This function is only for service purposes. Please don't use.

Input parameters

devNumber Unique ID for the device

Output parameters

There are no return parameters

Manual of the dynamic link library siosifm.dll 134

8 Functions for the service

IfmSetMeasurementRawValue

Syntax

int IfmSetMeasurementRawValue(int devNumber,unsigned int measurementFlags, int

outputWordRate)

Description

Alike the function IfmSetMeasurement is the function IfmSetMeasurementRawValue for the setting

of measurement parameters. But in this function all filter settings will be ignored and the firmware

works in a transparent mode. It means, the sample frequency and the output word rate are equal.

This function should be called directly before the measurement start (see IfmStart).

The intended use is for testing purposes only. Please don't use it. For normal reasons

IfmSetMeasurement with the measurement flag IFM_FILTER_NONE will do the same.

Manual of the dynamic link library siosifm.dll 135

8 Functions for the service

IfmUpdateDevice

Syntax

void IfmUpdateDevice(int devNumber)

Description

The function IfmUpdateDevice causes the update-mode of the card.

Attention!!! After starting of the update-mode it is not possible without the

firmware - upgrade to set back the device to the run-mode. A SIOS-

bootloader software should be applied for the upgrading of the firmware.

Input parameters

devNumber Unique ID for the device

Output parameters

There are no return parameters

Manual of the dynamic link library siosifm.dll 136

9 Error codes

9 Error codes

Symbolic constant value Explanation

IFM_ERROR_NONE 0 The function was executed successfully. No error has

occurred.

IFM_ERROR_DEVICE_INVALID -1 The function has tried to access a device which is not valid.

The devNumber parameter was wrong (out of range, device

was not opened, device was closed...)

IFM_ERROR_BAD_CHANNEL -2 The channel number was wrong. Up to four channels are

supported for each device, so channel numbers can be 0,1, 2

or 3.

IFM_ERROR_BAD_

DEVICETYPE

-3 The DLL supports more device types than the RE-10 for

which it was created. But this operation is not possible with

the given device because of the type doesn't support it.

Some operations can for instance only be made with RE-10

devices.

IFM_ERROR_DATALEN -4 The requested block of data is too large. It may be device

dependent what amount is supported.

IFM_ERROR_UNKNOWN -6 An error with a non specified case has occurred.

IFM_ERROR_DEVICECOUNT_

OVERFOW

-10 The maximum amount of opened devices has exceeded. It's

not likely that this occurs under normal conditions. But there

is a delay in closing a device an destroying the internal

structures. Be sure not to open/close the same device in a

fast loop.

Manual of the dynamic link library siosifm.dll 137

9 Error codes

Symbolic constant value Explanation

IFM_ERROR_BAD_

REQUESTTYPE

-11 You have requested an information which is not available.

IFM_INVALID_USB_ID -12 The id to identify the USB device (found with

IfmSearchUSBDevices) is not valid.

IFM_ERROR_CREATE_

HANDLE

-13 The device could not be opened. Perhaps the resource

(com-number, device file ..) is not present or is already in

use.

IFM_ERROR_NOT_

IMPLEMENTED

-14 This function exists as prototype but is not yet implemented.

Update to a newer version of the library.

IFM_ERROR_I2C_IN_USE -15 The I2C subsystem is already in use. Wait some time, before

requesting an I2C-operation.

IFM_ERROR_I2C_WRITE -16 The write operation was not successful. This can have

several reasons, permanent (target card not present) or

temporal (I2C-bus busy, target card busy). Try it again at

least one time.

IFM_ERROR_I2C_TIMEOUT -17 The I2C operation could not be carried out in the given time.

IFM_ERROR_OWR_TO_HIGH -18 The requested output word rate (OWR) was too high or the

resulting sample rate (with user filter settings) was too high.

IFM_ERROR_INFO_NOT_

AVAILABLE

-19 The requested information is not yet available. Try it again

later.

IFM_BAD_SENSOR -20 The sensorNumber in this function is invalid.

Manual of the dynamic link library siosifm.dll 138

Manual of the dynamic link library siosifm.dll 139

	1 The principle of operation
	2 Functions for the initialization, opening and closing
	IfmClose
	IfmCloseDevice
	IfmDeviceCount
	IfmInit
	IfmMaxDeviceCount
	IfmOpenCOM
	IfmOpenDemo
	IfmOpenUSB
	IfmSearchUSBDevices
	IfmUSBDeviceCount
	IfmUSBDeviceSerial

	3 Functions for the measurement
	 3.1 Continuous mode
	IfmGetFilterCoeff
	IfmGetFilterNotchFrequency
	IfmGetRecentValues
	IfmGetValues
	IfmLengthValue
	IfmSetPreset
	IfmGetPreset
	IfmSetFilter
	IfmSetFilterCoeff
	IfmSetFilterNotchFrequency
	IfmSetMeasurement
	IfmSetToZero
	IfmSetTrigger
	IfmStart
	IfmStop
	IfmResetBuffer
	IfmValueCount
	IfmAngleValue
	IfmAngleAvailable

	 3.2 Block mode
	IfmCancelBlock
	IfmIsBlockAvailable
	IfmSetBlockMode
	IfmSetBlockModeFilter
	IfmSetBlockModeFilterCoeff
	IfmStartBlock

	4 Functions for the controlling of the interferometers
	IfmGetAGC
	IfmGetRefMirrorVibration
	IfmNewSignalQualityAvailable
	IfmSetAGC
	IfmSetRefMirrorVibration
	IfmSignalQuality
	IfmStatus
	IfmWasBeamBreak
	IfmWasLaserUnstable
	IfmWasLostValues

	5 Functions for the communication with other devices
	 5.1 General functions
	IfmI2CRead
	IfmI2CRequestRead
	IfmI2CReadBuffer
	IfmI2CReadValue
	IfmI2CReadReady
	IfmI2CRequestWrite
	IfmI2CStatus
	IfmI2CWrite

	 5.2 Functions for the motor control card

	6 Functions for the environment values
	IfmAirPressure
	IfmAirPressureFlags
	IfmAirRefraction
	IfmConversionCoeff
	IfmDeadpathCoeff
	IfmEnableEdlenCorrection
	IfmEnvSensorCount
	IfmHumidity
	IfmHumidityFlags
	IfmIsEdlenEnabled
	IfmGetDeadPath
	IfmNewEnvValuesAvailable
	IfmResetManualEnvironment
	IfmSensorProperty
	IfmSensorValue
	IfmSetAirPressure
	IfmSetConvertionCoeff
	IfmSetDeadPath
	IfmSetHumidity
	IfmSetTemperature
	IfmSetWavelength
	IfmSetWaterVapourPressure
	IfmTemperature
	IfmTemperatureFlags
	IfmVacuumWavelength
	IfmWaterVapourPressure
	IfmWavelength

	7 Extended functions
	IfmAuxValue
	IfmChannels
	IfmDeviceInfo
	IfmDeviceInterface
	IfmDeviceType
	IfmDeviceValid
	IfmDLLVersionString
	IfmFireTrigger
	IfmFirmwareVersion
	IfmGetError
	IfmGetErrorString
	IfmRawValue
	IfmResetDevice
	IfmSetDeviceInfo
	IfmSetOption

	8 Functions for the service
	IfmSaveConfigDevice
	IfmSetMeasurementRawValue
	IfmUpdateDevice

	9 Error codes

